

Properties and Types of solid

1. The three states of matter are solid, liquid and gas. Which of the following statement is/are true about them

[AIIMS 1991]

- (a) Gases and liquids have viscosity as a common property
- (b) The molecules in all the three states possess random translational motion
- (c) Gases cannot be converted into solids without passing through the liquid phase
- (d) Solids and liquids have vapour pressure as a common property
- 2. A pure crystalline substance, on being heated gradually, first forms a turbid looking liquid and then the turbidity completely disappears. This behaviour is the characteristic of substances forming [BHU 2000]
 - (a) Isomeric crystals
- (b) Liquid crystals
- (c) Isomorphous crystals
- (d) Allotropic crystals
- 3. Which of the following is ferroelectric compound

[AFMC 1997]

- (a) $BaTiO_3$
- (b) $K_4 [Fe(CN)_6]$
- (c) Pb_2O_3
- (d) $PbZrO_3$
- 4. Solid CO_2 is an example of
 - (a) Molecular crystal
- (b) Ionic crystal
- (c) Covalent crystal
- (d) Metallic crystal
- **5.** Value of heat of fusion of *NaCl* is
 - (a) Very low
 - (b) Very high
 - (c) Not very low and not very high
 - (d) None of the above
- **6.** Piezoelectric crystals are used in
 - (a) TV
- (b) Radio
- (c) Record player
- (d) Freeze
- 7. Which of the following is true for diamond
 - (a) Diamond is a good conductor of electricity
 - (b) Diamond is soft
 - (c) Diamond is a bad conductor of heat
 - (d) Diamond is made up of C, H and O
- **8.** *NaCl* is an example of
 - (a) Covalent solid
- (b) Ionic solid
- (c) Molecular solid
- (d) Metallic solid
- **9.** Amorphous substances show
 - (A) Short and long range order
 - (B) Short range order

- (C) Long range order
- (D) Have no sharp M.P.(a) A and C are correct
- (b) B and C are correct
- (c) C and D are correct
- (d) B and D are correct
- 10. The characteristic features of solids are

[AMU 1994]

- (a) Definite shape
- (b) Definite size
- (c) Definite shape and size
- (d) Definite shape, size and rigidity
- 11. Which one of the following is a good conductor of electricity

[MP PMT 1994; AFMC 2002]

- (a) Diamond
- (b) Graphite
- (c) Silicon
- (d) Amorphous carbon
- **12.** A crystalline solid
- [Kerala CET (Med.) 2003]
- (a) Changes abruptly from solid to liquid when heated
- (b) Has no definite melting point
- (c) Undergoes deformation of its geometry easily
- (d) Has an irregular 3-dimensional arrangements
- (e) Softens slowly
- 13. Diamond is an example of

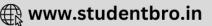
[MP PET/PMT 1998; CET Pune 1998]

- (a) Solid with hydrogen bonding
- (b) Electrovalent solid
- (c) Covalent solid
- (d) Glass
- 14. The solid NaCl is a bad conductor of electricity since

[AIIMS 1980]

- (a) In solid NaCl there are no ions
- (b) Solid NaCl is covalent
- (c) In solid NaCl there is no velocity of ions
- (d) In solid NaCl there are no electrons
- **15.** The existence of a substance in more than one solid modifications is known as **or** Any compound having more than two crystal structures is called

[MP PMT 1993; MP PET 1999]


- (a) Polymorphism
- (b) Isomorphism
- (c) Allotropy
- (d) Enantiomorphism
- Which is not a property of solids(a) Solids are always crystalline in nature
- [MP PET 1995]
 - (b) Solids have high density and low compressibility
 - (c) The diffusion of solids is very slow
 - (c) The diffusion of solids is very sid
 - (d) Solids have definite volume
- 7. Which solid will have the weakest intermolecular forces
 - (a) Ice
- (b) Phosphorus
- (c) Naphthalene (d) Sodiu 18. Dulong and Petit's law is valid only for
- (d) Sodium fluoride id only for [KCET 2004]
 - (a) Metals
- (b) Non-metals
- (c) Gaseous elements (d) Solid elements

 Which of the following is an example of metallic crystal
 - solid
 (a) C

(b) *Si*

	(c) W	(d) AgCl	34.	Which of the following is a	ın
20.	Under which category iodi the following	ne crystals are placed among		solid (a) <i>Si</i>	
	(a) Ionic crystal	(b) Metallic crystal		(c) Al	
	(c) Molecular crystal	(d) Covalent crystal	35∙	Which of the following is	; a
21.		nelting point is established by		solid	
		[Kerala CET (Med.) 2002]		(a) Diamond	
	(a) Covalent solids	(b) Ionic solids		(c) Li	
	(c) Pseudo solids	(d) Molecular solids	36.	Which one is an example of	f a
22.		ctor, the impurity to be added		(a) Glass	
	valence electrons	ch of the following number of [KCET (Engg.) 2001]	0=	(c) Cesium chloride Silicon is	
	(a) 1	(b) 2	3 7•	(a) Semiconductor	
	(c) 3	(d) 5		(c) Conductor	
23.	Which of the following is no	on-crystalline solid	38.	Which of the following s	sta
	(a) CsCl	(b) NaCl	Ü	solids is incorrect	
	(c) CaF_2	(d) Glass		(a) They melt over a range	; O
24.	The lustre of a metal is due	to [AFMC 1998]		(b) They are anisotropic	
	(a) Its high density	(b) Its high polishing		(c) There is no orderly arr	
	(c) Its chemical inertness	(d) Presence of free		(d) They are rigid and inco	
electi		[DCF and]	39.	The ability of a given subscrystalline structure is called	
25 .	A crystalline solid have (a) Long range order	[DCE 2001] (b) Short range order		(a) Amorphism	
	(c) Disordered arrangement	_		(c) Polymorphism	
26.	Crystalline solids are	[Pb. PMT 1999]	40.	Glass is	
_0.	(a) Glass	(b) Rubber		(a) Supercooled liquid	
	(c) Plastic	(d) Sugar		(c) Amorphous solid	
27.	Davy and Faraday proved the	hat [Kerala CET (Med.) 2002]			
	(a) Diamond is a form of c	arbon		Crystallograph	y
		arbon containing compounds	1.	The correct statement in th	ρ i
	are always equal				
	are always equal	ika in minimum 4.	1.		Br
	(c) The strength of graph	ite is minimum compared to	1.	(a) The ionic crystal of Ag	
	• •	ite is minimum compared to	1.	(a) The ionic crystal of Ag(b) The unit cell having c	ry
28.	(c) The strength of graph platinum(d) Graphite is very hardWhich one of the formula o	ollowing metal oxides is	1.	(a) The ionic crystal of Ag (b) The unit cell having c $\alpha = \beta = 90^{\circ}$, $\gamma = 120^{\circ}$	ry is
28.	(c) The strength of graph platinum(d) Graphite is very hard	ollowing metal oxides is [MP PET 2002]	1.	 (a) The ionic crystal of Ag (b) The unit cell having c α = β = 90°, γ = 120° (c) In ionic compounds h 	ry is
28.	(c) The strength of graph platinum(d) Graphite is very hardWhich one of the formula o	ollowing metal oxides is	1.	 (a) The ionic crystal of Ag (b) The unit cell having c α = β = 90°, γ = 120° (c) In ionic compounds h γ/+ is high 	ry is
28.	(c) The strength of graph platinum(d) Graphite is very hardWhich one of the forantiferromagnetic in nature	ollowing metal oxides is [MP PET 2002]	1.	 (a) The ionic crystal of Ag (b) The unit cell having c α = β = 90°, γ = 120° (c) In ionic compounds h γ/+ / γ is high 	ry is av
28. 29.	 (c) The strength of graph platinum (d) Graphite is very hard Which one of the foantiferromagnetic in nature (a) MnO₂ 	following metal oxides is $[MP\ PET\ 2002]$ (b) TiO_2 (d) CrO_2		 (a) The ionic crystal of Ag (b) The unit cell having c α = β = 90°, γ = 120° (c) In ionic compounds h γ+/γ- is high (d) The coordination num 	ry is av
	 (c) The strength of graph platinum (d) Graphite is very hard Which one of the foantiferromagnetic in nature (a) MnO₂ (c) VO₂ In graphite, carbon atoms and the strength of the stren	following metal oxides is $[MP\ PET\ 2002]$ (b) TiO_2 (d) CrO_2 are joined together due to $[AFMC\ 2002]$	2.	 (a) The ionic crystal of Ag (b) The unit cell having c α = β = 90°, γ = 120° (c) In ionic compounds h γ/+ / γ is high (d) The coordination num Which of the following is constant. 	ry is av
	 (c) The strength of graph platinum (d) Graphite is very hard Which one of the foantiferromagnetic in nature (a) MnO₂ (c) VO₂ In graphite, carbon atoms at (a) Ionic bonding 	following metal oxides is $[MP\ PET\ 2002]$ (b) TiO_2 (d) CrO_2 are joined together due to $[AFMC\ 2002]$ (b) Vander Waal's forces		 (a) The ionic crystal of Ag (b) The unit cell having c α = β = 90°, γ = 120° (c) In ionic compounds h γ+/γ- is high (d) The coordination num 	ry is av be
29.	 (c) The strength of graph platinum (d) Graphite is very hard Which one of the forantiferromagnetic in nature (a) MnO₂ (c) VO₂ In graphite, carbon atoms at (a) Ionic bonding (c) Metallic bonding 	ollowing metal oxides is [MP PET 2002] (b) TiO_2 (d) CrO_2 are joined together due to [AFMC 2002] (b) Vander Waal's forces (d) Covalent bonding		 (a) The ionic crystal of Ag (b) The unit cell having c α = β = 90°, γ = 120° (c) In ionic compounds h γ/+ / γ is high (d) The coordination num Which of the following is coordinated Crystal Axial 	ry is av be
	 (c) The strength of graph platinum (d) Graphite is very hard Which one of the foantiferromagnetic in nature (a) MnO₂ (c) VO₂ In graphite, carbon atoms at (a) Ionic bonding 	ollowing metal oxides is [MP PET 2002] (b) TiO_2 (d) CrO_2 are joined together due to [AFMC 2002] (b) Vander Waal's forces (d) Covalent bonding of correct for ionic crystals		 (a) The ionic crystal of Ag (b) The unit cell having c α = β = 90°, γ = 120° (c) In ionic compounds h γ+/γ- is high (d) The coordination num Which of the following is coordinated by the coordination of the coordination of the following is coordinated by the coordination of the following is coordinated by the coordination of the coor	ry is av be ori ce = c
29.	 (c) The strength of graph platinum (d) Graphite is very hard Which one of the foantiferromagnetic in nature (a) MnO₂ (c) VO₂ In graphite, carbon atoms a (a) Ionic bonding (c) Metallic bonding Which of the following is not 	ollowing metal oxides is [MP PET 2002] (b) TiO_2 (d) CrO_2 are joined together due to [AFMC 2002] (b) Vander Waal's forces (d) Covalent bonding of correct for ionic crystals [Orissa JEE 2002]		 (a) The ionic crystal of Ag (b) The unit cell having c α = β = 90°, γ = 120° (c) In ionic compounds h γ/+ / γ = is high (d) The coordination num Which of the following is contracted by the corrected by the coordination of the following is contracted by the coordination of the coordination of the following is contracted by the coordination of the coordination of	ry is av be ori ce = c
29.	 (c) The strength of graph platinum (d) Graphite is very hard Which one of the feantiferromagnetic in nature (a) MnO₂ (c) VO₂ In graphite, carbon atoms a (a) Ionic bonding (c) Metallic bonding Which of the following is not (a) They possess high melt 	ollowing metal oxides is [MP PET 2002] (b) TiO_2 (d) CrO_2 are joined together due to [AFMC 2002] (b) Vander Waal's forces (d) Covalent bonding of correct for ionic crystals [Orissa JEE 2002]		(a) The ionic crystal of Ag (b) The unit cell having composed $\alpha = \beta = 90^{\circ}$, $\gamma = 120^{\circ}$ (c) In ionic compounds have $\frac{\gamma_{+}}{\gamma_{-}}$ is high (d) The coordination number γ_{-} (d) The coordination number γ_{-} (d) The coordination number γ_{-} (e) Crystal Axial	ry is av be ori ce = c
29.	(c) The strength of graph platinum (d) Graphite is very hard Which one of the formatiferromagnetic in nature (a) MnO_2 (c) VO_2 In graphite, carbon atoms at (a) Ionic bonding (c) Metallic bonding Which of the following is not (a) They possess high melt (b) All are electrolyte	ollowing metal oxides is [MP PET 2002] (b) TiO_2 (d) CrO_2 are joined together due to [AFMC 2002] (b) Vander Waal's forces (d) Covalent bonding ot correct for ionic crystals [Orissa JEE 2002] ting point and boiling point		 (a) The ionic crystal of Ag (b) The unit cell having c α = β = 90°, γ = 120° (c) In ionic compounds h γ+/γ- is high (d) The coordination num Which of the following is coordinated by the coordination of the coordination of the following is coordinated by the coordination of the following is coordinated by the coordination of the coor	ry is av be ori ce = c
29.	 (c) The strength of graph platinum (d) Graphite is very hard Which one of the feantiferromagnetic in nature (a) MnO₂ (c) VO₂ In graphite, carbon atoms a (a) Ionic bonding (c) Metallic bonding Which of the following is not (a) They possess high melt (b) All are electrolyte (c) Exhibit the property of 	ollowing metal oxides is [MP PET 2002] (b) TiO_2 (d) CrO_2 are joined together due to [AFMC 2002] (b) Vander Waal's forces (d) Covalent bonding of correct for ionic crystals [Orissa JEE 2002] ting point and boiling point		(a) The ionic crystal of Ag (b) The unit cell having c $\alpha = \beta = 90^{\circ}$, $\gamma = 120^{\circ}$ (c) In ionic compounds h $\frac{\gamma_{+}}{\gamma_{-}}$ is high (d) The coordination num Which of the following is coordinated by the followi	ry is av be ori ce = c
29.	(c) The strength of graph platinum (d) Graphite is very hard Which one of the formatiferromagnetic in nature (a) MnO_2 (c) VO_2 In graphite, carbon atoms at (a) Ionic bonding (c) Metallic bonding Which of the following is not (a) They possess high melt (b) All are electrolyte	ollowing metal oxides is [MP PET 2002] (b) TiO_2 (d) CrO_2 are joined together due to [AFMC 2002] (b) Vander Waal's forces (d) Covalent bonding ot correct for ionic crystals [Orissa JEE 2002] ting point and boiling point Tisomorphism perties of the bond		(a) The ionic crystal of Ag (b) The unit cell having c $\alpha = \beta = 90^{\circ}, \ \gamma = 120^{\circ}$ (c) In ionic compounds h $\frac{\gamma_{+}}{\gamma_{-}} \text{ is high}$ (d) The coordination num Which of the following is considered as $\frac{\text{Crystal}}{\text{system}} = \frac{\text{Axial system}}{\text{distansian}}$ (a) Cubic $a \neq b = 0$ (b) Monoclinic $a \neq b = 0$ (c) Rhombohe $a = b = 0$	ry is av be ori ce = c
29. 30.	(c) The strength of graph platinum (d) Graphite is very hard Which one of the frantiferromagnetic in nature (a) MnO ₂ (c) VO ₂ In graphite, carbon atoms a (a) Ionic bonding (c) Metallic bonding Which of the following is not (a) They possess high melt (b) All are electrolyte (c) Exhibit the property of (d) Exhibit directional pro-	ollowing metal oxides is [MP PET 2002] (b) TiO_2 (d) CrO_2 are joined together due to [AFMC 2002] (b) Vander Waal's forces (d) Covalent bonding ot correct for ionic crystals [Orissa JEE 2002] ting point and boiling point Tisomorphism perties of the bond		(a) The ionic crystal of Ag (b) The unit cell having c $\alpha = \beta = 90^{\circ}$, $\gamma = 120^{\circ}$ (c) In ionic compounds h $\frac{\gamma_{+}}{\gamma_{-}}$ is high (d) The coordination num Which of the following is coordinated asystem (a) Cubic $a \neq b = 6$ (b) Monoclinic $a \neq b = 6$ (c) Rhombohe $a = b = 6$ (d) Triclinic $a = b = 6$	ry is av be ce = c = c
29. 30.	(c) The strength of graph platinum (d) Graphite is very hard Which one of the feantiferromagnetic in nature (a) MnO_2 (c) VO_2 In graphite, carbon atoms a (a) Ionic bonding (c) Metallic bonding Which of the following is not (a) They possess high melt (b) All are electrolyte (c) Exhibit the property of (d) Exhibit directional profully the property of the following is a second content of the following content of the following is a second	ollowing metal oxides is [MP PET 2002] (b) TiO_2 (d) CrO_2 are joined together due to [AFMC 2002] (b) Vander Waal's forces (d) Covalent bonding ot correct for ionic crystals [Orissa JEE 2002] ting point and boiling point Tisomorphism perties of the bond molecular crystal		(a) The ionic crystal of Ag (b) The unit cell having c $\alpha = \beta = 90^{\circ}$, $\gamma = 120^{\circ}$ (c) In ionic compounds h $\frac{\gamma_{+}}{\gamma_{-}}$ is high (d) The coordination num Which of the following is coordinated by the coordination of the following is coordinated by the coordinated	ry is av be ce = c = c
29. 30.	(c) The strength of graph platinum (d) Graphite is very hard Which one of the feantiferromagnetic in nature (a) MnO ₂ (c) VO ₂ In graphite, carbon atoms a (a) Ionic bonding (c) Metallic bonding Which of the following is not (a) They possess high melt (b) All are electrolyte (c) Exhibit the property of (d) Exhibit directional pro Which of the following is a (a) SiC	ollowing metal oxides is [MP PET 2002] (b) TiO_2 (d) CrO_2 are joined together due to [AFMC 2002] (b) Vander Waal's forces (d) Covalent bonding of correct for ionic crystals [Orissa JEE 2002] ting point and boiling point Tisomorphism perties of the bond molecular crystal (b) $NaCl$ (d) Ice	2.	(a) The ionic crystal of Ag (b) The unit cell having c $\alpha = \beta = 90^{\circ}, \ \gamma = 120^{\circ}$ (c) In ionic compounds have $\frac{\gamma_{+}}{\gamma_{-}}$ is high (d) The coordination num which of the following is considered as $\frac{\text{Crystal}}{\text{System}}$ Axial system distant $\frac{\text{Axial}}{\text{System}}$ (a) Cubic $\frac{\alpha \neq b}{\text{Cubic}}$ (b) Monoclinic $\frac{\alpha \neq b}{\text{Cubic}}$ (c) Rhombohe $\frac{\alpha = b}{\text{Cubic}}$ (d) Triclinic $\frac{\alpha = b}{\text{Cubic}}$ Tetragonal crystal system dimensions	ry is av be ce = c = c
29. 30.	(c) The strength of graph platinum (d) Graphite is very hard Which one of the feantiferromagnetic in nature (a) MnO_2 (c) VO_2 In graphite, carbon atoms a (a) Ionic bonding (c) Metallic bonding Which of the following is not (a) They possess high melt (b) All are electrolyte (c) Exhibit the property of (d) Exhibit directional proyunic of the following is a second of the following is a s	ollowing metal oxides is [MP PET 2002] (b) TiO_2 (d) CrO_2 are joined together due to [AFMC 2002] (b) Vander Waal's forces (d) Covalent bonding of correct for ionic crystals [Orissa JEE 2002] ting point and boiling point Tisomorphism perties of the bond molecular crystal (b) $NaCl$ (d) Ice	2.	(a) The ionic crystal of Ag (b) The unit cell having c $\alpha = \beta = 90^{\circ}, \ \gamma = 120^{\circ}$ (c) In ionic compounds have $\frac{\gamma_{+}}{\gamma_{-}}$ is high (d) The coordination num Which of the following is considered as $\frac{\text{Crystal}}{\text{system}}$ Axial $\frac{\text{Axial}}{\text{system}}$ (a) Cubic $a \neq b = 0$ (b) Monoclinic $a \neq b = 0$ (c) Rhombohe $a = b = 0$ (d) Triclinic $a = b = 0$ Tetragonal crystal system dimensions (a) $a = b = c$ and $a = \beta = 0$	ry is av be ori $\mathbf{ce} = c$ $= c$
29. 30.	(c) The strength of graph platinum (d) Graphite is very hard Which one of the feantiferromagnetic in nature (a) MnO ₂ (c) VO ₂ In graphite, carbon atoms a (a) Ionic bonding (c) Metallic bonding Which of the following is not (a) They possess high melt (b) All are electrolyte (c) Exhibit the property of (d) Exhibit directional pro Which of the following is a (a) SiC (c) Graphite Quartz is a crystalline varie (a) Silica (c) Silicon carbide	ollowing metal oxides is [MP PET 2002] (b) TiO_2 (d) CrO_2 are joined together due to [AFMC 2002] (b) Vander Waal's forces (d) Covalent bonding ot correct for ionic crystals [Orissa JEE 2002] ting point and boiling point risomorphism perties of the bond molecular crystal (b) $NaCl$ (d) Ice ty of [Pb. PMT 2000] (b) Sodium silicate (d) Silicon	2.	(a) The ionic crystal of Ag (b) The unit cell having c $\alpha = \beta = 90^{\circ}, \ \gamma = 120^{\circ}$ (c) In ionic compounds have $\frac{\gamma_{+}}{\gamma_{-}}$ is high (d) The coordination num which of the following is considered as $\frac{\text{Crystal}}{\text{System}}$ Axial system distant $\frac{\text{Axial}}{\text{System}}$ (a) Cubic $\frac{\alpha \neq b}{\text{Cubic}}$ (b) Monoclinic $\frac{\alpha \neq b}{\text{Cubic}}$ (c) Rhombohe $\frac{\alpha = b}{\text{Cubic}}$ (d) Triclinic $\frac{\alpha = b}{\text{Cubic}}$ Tetragonal crystal system dimensions	ry is av be ori $\mathbf{ce} = c$ $= c$
29. 30.	(c) The strength of graph platinum (d) Graphite is very hard Which one of the feantiferromagnetic in nature (a) MnO ₂ (c) VO ₂ In graphite, carbon atoms a (a) Ionic bonding (c) Metallic bonding Which of the following is not (a) They possess high melt (b) All are electrolyte (c) Exhibit the property of (d) Exhibit directional proyunic of the following is a second of the following is a sec	ollowing metal oxides is [MP PET 2002] (b) TiO_2 (d) CrO_2 are joined together due to [AFMC 2002] (b) Vander Waal's forces (d) Covalent bonding ot correct for ionic crystals [Orissa JEE 2002] ting point and boiling point risomorphism perties of the bond molecular crystal (b) $NaCl$ (d) Ice ty of [Pb. PMT 2000] (b) Sodium silicate	2.	(a) The ionic crystal of Ag (b) The unit cell having c $\alpha = \beta = 90^{\circ}, \ \gamma = 120^{\circ}$ (c) In ionic compounds have $\frac{\gamma_{+}}{\gamma_{-}}$ is high (d) The coordination num Which of the following is considered as $\frac{\text{Crystal}}{\text{system}}$ Axial $\frac{\text{Axial}}{\text{system}}$ (a) Cubic $a \neq b = 0$ (b) Monoclinic $a \neq b = 0$ (c) Rhombohe $a = b = 0$ (d) Triclinic $a = b = 0$ Tetragonal crystal system dimensions (a) $a = b = c$ and $a = \beta = 0$	ry is av be ori $\mathbf{ce} = c$ $\mathbf{c} \cdot \mathbf{r}$ $\mathbf{c} \cdot \mathbf{r}$ $\mathbf{r} \cdot \mathbf{r}$
29. 30. 31.	(c) The strength of graph platinum (d) Graphite is very hard Which one of the feantiferromagnetic in nature (a) MnO ₂ (c) VO ₂ In graphite, carbon atoms a (a) Ionic bonding (c) Metallic bonding Which of the following is not (a) They possess high melt (b) All are electrolyte (c) Exhibit the property of (d) Exhibit directional pro Which of the following is a (a) SiC (c) Graphite Quartz is a crystalline varie (a) Silica (c) Silicon carbide	ollowing metal oxides is [MP PET 2002] (b) TiO_2 (d) CrO_2 are joined together due to [AFMC 2002] (b) Vander Waal's forces (d) Covalent bonding ot correct for ionic crystals [Orissa JEE 2002] ting point and boiling point risomorphism perties of the bond molecular crystal (b) $NaCl$ (d) Ice ty of [Pb. PMT 2000] (b) Sodium silicate (d) Silicon	2.	(a) The ionic crystal of Ag (b) The unit cell having c $\alpha = \beta = 90^{\circ}, \ \gamma = 120^{\circ}$ (c) In ionic compounds have $\frac{\gamma_{+}}{\gamma_{-}}$ is high (d) The coordination num Which of the following is considered as $\frac{\text{Crystal}}{\text{System}}$ Axial system (a) Cubic $a \neq b = 10^{\circ}$ (b) Monoclinic $a \neq b = 10^{\circ}$ (c) Rhombohe $a = b = 10^{\circ}$ (d) Triclinic $a = b = 10^{\circ}$ Tetragonal crystal system dimensions (a) $a = b = c$ and $a = \beta = 10^{\circ}$ (b) $a = b \neq c$ and $a = \beta = 10^{\circ}$ (c) $a = b \neq c$ and $a = \beta = 10^{\circ}$	ry is av be ce = c = c = c

34.	Which o	of the follo	wing is an	exa	imple of cov	alent crystal
	(a) Si			(b)	NaF	
	(c) <i>Al</i>				Ar	
35∙	Which of solid	of the foll	owing is a	an e	example of	ionic crystal
	(a) Dia	mond		(b)	LiF	
	(c) <i>Li</i>			(d)	Silicon	
36.			-		rphous solid	
	(a) Gla			٠,	Salt	
		ium chlori	de	(d)	Calcium flu	
37 •	Silicon i				_	IHCET 2004
		niconducto			Insulator	
00	(c) Con				None of the	
38.	solids is	incorrect	_			amorphous [KCET 2004
		•	r a range o	f tei	mperature	
		ey are aniso	_			,
			-	_	nent of parti	cles
			and incom	_		
39.	crystalli	ne structu	re is called			two or more [DCE 2004
		orphism			Isomorphis	sm
		rm om bion			Isomerism	
	(c) Poly	ymorpmsn	1	(a)	1501110115111	
40.	Glass is	-				1: _1
40.	Glass is (a) Sup	ercooled l	iquid	(b)	Crystalline	
40.	Glass is (a) Sup	-	iquid	(b)		
40.	Glass is (a) Sup (c) Am	percooled li orphous so	iquid olid	(b) (d)	Crystalline	
1.	Glass is (a) Sup (c) Am	percooled li orphous so Crystallo	iquid blid ography	(b) (d)	Crystalline Liquid crys	tal
	Glass is (a) Sup (c) Ame	percooled li orphous so Crystallo rect statem	iquid olid ography nent in the	(b) (d) an	Crystalline Liquid crys d Lattice Dwing is [Mathematics]	tal MP PET 1997
	Glass is (a) Sup (c) Am The corr (a) The	percooled li orphous so Crystallo rect statem e ionic crys	iquid blid ography nent in the tal of $AgBn$	(b) (d) and follow	Crystalline Liquid crys d Lattice owing is [Mass Schottky constitution]	MP PET 1997 defect
	Glass is (a) Sup (c) Am The corr (a) The (b) The	percooled li orphous so Crystallo rect statem e ionic crys	iquid blid blid bgraphy nent in the stal of $AgBr$ having cry	(b) (d) and following the stale	Crystalline Liquid crys d Lattice owing is [Nas Schottky of parameters	MP PET 1997 defect
	Glass is (a) Sup (c) Amo The corr (a) The (b) The $\alpha = 0$	percooled liporphous so crystallo rect statem a ionic crys e unit cell $\alpha = \beta = 90^{\circ}$,	iquid blid blid blid begraphy tent in the stal of $AgBr$ having cry $\gamma = 120^{\circ}$ is	(b) (d) and follow has stall sheet	Crystalline Liquid crys d Lattice owing is [Mas Schottky of parameters exagonal	MP PET 1997. defect $a = b \neq c$,
	Glass is (a) Sup (c) Amo The corr (a) The (b) The $\alpha = 0$	percooled liporphous so crystallo rect statem a ionic crys e unit cell $\alpha = \beta = 90^{\circ}$,	iquid blid blid blid begraphy tent in the stal of $AgBr$ having cry $\gamma = 120^{\circ}$ is	(b) (d) and follow has stall sheet	Crystalline Liquid crys d Lattice owing is [Mas Schottky of parameters exagonal	MP PET 1997
	Glass is (a) Sup (c) Am The corr (a) The (b) The α = (c) In i	percooled liporphous so crystallo rect statem a ionic crys e unit cell $\alpha = \beta = 90^{\circ}$,	iquid blid blid blid begraphy tent in the stal of $AgBr$ having cry $\gamma = 120^{\circ}$ is	(b) (d) and follow has stall sheet	Crystalline Liquid crys d Lattice owing is [Mas Schottky of parameters exagonal	MP PET 1997 defect , $a = b \neq c$,
1.	Glass is (a) Sup (c) Am The corr (a) The (b) The $\alpha =$ (c) In i $\frac{\gamma_{+}}{\gamma_{-}}$ (d) The	percooled liporphous so crystallo rect statem a ionic crys a unit cell $\beta = 90^{\circ}$, onic compis high	iquid blid blid blid benefit in the stal of $AgBr$ having cry $\gamma = 120^{\circ}$ is bounds having ion number	(b) (d) and follow has stall as hearing	Crystalline Liquid crys d Lattice owing is [Mass Schottky of parameters exagonal Frenkel def	tal MP PET 1997 defect , $a = b \neq c$, ect the ratio $NaCl$ is 4
	Glass is (a) Sup (c) Am The corr (a) The (b) The $\alpha = \frac{\gamma_{+}}{\gamma_{-}}$ (d) The Which of	percooled liporphous so crystallo rect statem a ionic crystallo e $\beta = 90^{\circ}$, onic compais high	iquid plid plid paraphy nent in the stal of $AgBr$ having cry $\gamma = 120^{\circ}$ is bounds having ion number wing is corrected.	(b) (d) and follow has stall as hearing	Crystalline Liquid crys d Lattice owing is [Nas Schottky comparameters exagonal Frenkel def	MP PET 1997. defect $a = b \neq c$, ect the ratio $NaCl$ is 4 [DPMT 1997.
1.	Glass is (a) Sup (c) Am The corr (a) The (b) The $\alpha = \frac{\gamma_{+}}{\gamma_{-}}$ (d) The Which of	percooled liporphous so crystallo rect statem a ionic crys a unit cell $\beta = 90^{\circ}$, onic compis high	iquid blid blid blid benefit in the stal of $AgBr$ having cry $\gamma = 120^{\circ}$ is bounds having ion number	(b) (d) and follow follow stal s he ring er of	Crystalline Liquid crys d Lattice owing is [Mass Schottky of parameters exagonal Frenkel def	MP PET 1997. defect $a = b \neq c$, ect the ratio $a = b \neq c$
1.	Glass is (a) Sup (c) Am The corr (a) The (b) The $\alpha = \frac{\gamma_{+}}{\gamma_{-}}$ (d) The Which of	percooled liporphous so crystallo rect statem a ionic crystallo e $\beta = 90^{\circ}$, onic compais high a coordinate of the follow crystal	iquid plid plid plid pent in the stal of $AgBr$ having cry $\gamma = 120^{\circ}$ is pounds having is corn number wing is corn $Axial$	(b) (d) and following following following following following following for following	Crystalline Liquid crys d Lattice owing is [Note: A section of the content of	MP PET 1997. defect $a = b \neq c$, ect the ratio $NaCl$ is 4 [DPMT 1997.
1.	Glass is (a) Sup (c) Am The corr (a) The $\alpha =$ (c) In i $\frac{\gamma_{+}}{\gamma_{-}}$ (d) The Which of (a) C	percooled liporphous so crystallo rect statem a ionic crys a unit cell $\beta = 90^{\circ}$, onic compais high a coordinate of the follow crystal system	iquid blid blid blid blid blid blid blid bl	(b) (d) and follow has stall as he ring	Crystalline Liquid crys d Lattice owing is [Mass Schottky of parameters exagonal Frenkel def Na+ion in Axial angles $\alpha = \beta \neq \gamma$ $= 90^{\circ}$ $\alpha = \beta = \gamma$	tal MP PET 1997 defect , $a = b \neq c$, fect the ratio NaCl is 4 [DPMT 1997] Examples Cu, KCl PbCrO ₂ ,
1.	Glass is (a) Sup (c) Am The corr (a) The (b) The $\alpha =$ (c) In i $\frac{\gamma_{+}}{\gamma_{-}}$ (d) The Which of (a) C (b) M	percooled liporphous so crystallo rect statem a ionic crys a unit cell $\alpha = \beta = 90^{\circ}$, onic compais high a coordinate of the follow crystal system cubic	iquid blid ography nent in the stal of $AgBr$ having cry $\gamma = 120^{\circ}$ is bounds have ion number wing is corrected at $a \neq b = a$	(b) (d) and follow has stall as hering er of rect	Crystalline Liquid crys d Lattice owing is [Nas Schottky of parameters exagonal Frenkel def Na^+ ion in Axial angles $\alpha = \beta \neq \gamma$ $= 90^\circ$	tal MP PET 1997 defect , $a = b \neq c$, fect the ratio NaCl is 4 [DPMT 1997] Examples Cu, KCl PbCrO ₂ , PbCrO ₄

		0	-	L
	Crystal system	Axial distance	Axial angles	Examples
(a)	Cubic	$a \neq b = c$	$\alpha = \beta \neq \gamma$ $= 90^{\circ}$	Cu, KCl
(b)	Monoclinic	$a \neq b = c$	$\alpha = \beta = \gamma$ $= 90^{\circ}$	$PbCrO_2$, $PbCrO_4$
(c)	Rhombohe dral	a = b = c	$\alpha = \beta = \gamma$ $\neq 90^{\circ}$	$CaCO_3$, HgS
(d)	Triclinic	a = b = c	$\alpha \neq \beta = \gamma \neq 90^{\circ}$	$K_2Cr_2O_7$, $CuSO_4$. $5H_2O$

has the following unit cell [MP PMT 1993]

- = 90°
- $= 90^{o}$
- = 90°
- $00^{\circ}, \ \gamma = 120^{\circ}$
- Rhombic sulphur has the following structure
 - (a) Open chain
 - (b) Tetrahedral

(d) Molecular

(c) Metallic

	(c) Puckered 6-membered ring		(d) $a \neq b \neq c, \alpha \neq \beta \neq \gamma \neq 90^{\circ}$
	(d) Puckered 8-membered ring	20.	The low solubility of $BaSO_4$ in water can be attributed
5∙	Space lattice of CaF_2 is [MP PMT 1993]		to
	(a) Face centred cubic		[CBSE PMT 1991]
	(b) Body centred cubic(c) Simple cubic		(a) High lattice energy(b) Dissociation energy(c) Low lattice energy(d) Ionic bond
	(d) Hexagonal closed packing	21.	Bravais lattices are of [MP PMT 1997]
6.	For cubic coordination the value of radius ratio is		(a) 8 types (b) 12 types
	(a) $0.732 - 1.000$ (b) $0.225 - 0.414$		(c) 14 types (d) 9 types
	(c) $0.000 - 0.225$ (d) $0.414 - 0.732$	22.	The structure of <i>TlCl</i> is similar to <i>CsCl</i> . What would be
7•	How many space lattices are obtainable from the	0.7	the radius ratio in <i>TlCl</i> (a) 0.155 - 0.225 (b) 0.225 - 0.414
	different crystal systems [MP PMT 1996; MP PET/PMT 1998 (a) 7 (b) 14	8]	(a) 0.133 - 0.223 (b) 0.223 - 0.414 (c) 0.414 - 0.732 (d) 0.732 - 1.000
	(c) 32 (d) 230	23.	Structure similar to zinc blende is found in
8.	Example of unit cell with crystallographic dimensions	Ü	(a) AgCl (b) NaCl
	$a \neq b \neq c, \ \alpha = \gamma = 90^{\circ}, \ \beta \neq 90^{\circ} \text{ is}$ [AFMC 1998]		(c) CuCl (d) TlCl
	(a) Calcite (b) Graphite	24.	The structure of Na_2O crystal is
	(c) Rhombic sulphur (d) Monoclinic sulphur		(a) CsCl type (b) NaCl type
9.	In a face-centered cubic lattice, a unit cell is shared equally by how many unit cells [CBSE PMT 2005]		(c) ZnS type (d) Antifluorite
	(a) 8 (b) 4	25.	Structure of <i>ZnS</i> is
	(c) 2 (d) 6		(a) Body centred cubic(b) Face centred cubic(c) Simple cube(d) Fluorite structure
10.	The maximum radius of sphere that can be fitted in the octahedral hole of cubical closed packing of sphere of	26.	The crystal system of a compound with unit cell
	radius r is		dimensions $a = 0.387$, $b = 0.387$ and $c = 0.504 nm$ and
	(a) 0.732 r (b) 0.414 r		$\alpha = \beta = 90^{\circ}$ and $\gamma = 120^{\circ}$ is [AIIMS 2004]
	(c) 0.225 <i>r</i> (d) 0.155 <i>r</i>		(a) Cubic (b) Hexagonal
11.	The unit cell of a <i>NaCl</i> lattice		(c) Orthorhombic (d) Rhombohedral
	 (a) Is body centred cube (b) Has 3Na⁺ ions (c) Has 4NaCl units (d) Is electrically charged 	2 7.	The number of tetrahedral voids in the unit cell of a face centered cubic lattice of similar atoms is [Kerala PMT 2004]
12.	For tetrahedral coordination number, the radius ratio		(a) 4 (b) 6
	$r_{.+}$		(c) 8 (d) 10
	$\frac{c}{r_a}$ is [KCET 2000]	28.	An fcc unit cell of aluminium contains the equivalent of
	(a) 0.732 -1.000 (b) 0.414 -0.732		how many atoms [DCE 2003]
			(a) 1 (b) 2
13.	(a) 0.732 -1.000 (b) 0.414 -0.732 (c) 0.225 -0.414 (d) 0.155 -0.225 What type of lattice is found in potassium chloride		(a) 1 (b) 2 (c) 3 (d) 4
13.	(a) 0.732 - 1.000 (b) 0.414 - 0.732 (c) 0.225 - 0.414 (d) 0.155 - 0.225 What type of lattice is found in potassium chloride crystal [MP PMT 1996]	_	(a) 1 (b) 2
13.	(a) 0.732 - 1.000 (b) 0.414 - 0.732 (c) 0.225 - 0.414 (d) 0.155 - 0.225 What type of lattice is found in potassium chloride crystal [MP PMT 1996] (a) Face centred cubic (b) Body centred cubic	1.	(a) 1 (b) 2 (c) 3 (d) 4 Crystal packing
	(a) 0.732 - 1.000 (b) 0.414 - 0.732 (c) 0.225 - 0.414 (d) 0.155 - 0.225 What type of lattice is found in potassium chloride crystal [MP PMT 1996] (a) Face centred cubic (b) Body centred cubic (c) Simple cubic (d) Simple tetragonal	1.	(a) 1 (b) 2 (c) 3 (d) 4 Crystal packing If 'Z' is the number of atoms in the unit cell that represents the closest packing sequence
13. 14.	(a) 0.732 - 1.000 (b) 0.414 - 0.732 (c) 0.225 - 0.414 (d) 0.155 - 0.225 What type of lattice is found in potassium chloride crystal [MP PMT 1996] (a) Face centred cubic (b) Body centred cubic (c) Simple cubic (d) Simple tetragonal The three dimensional graph of lattice points which sets the pattern for the whole lattice is called	1.	(a) 1 (b) 2 (c) 3 (d) 4 Crystal packing If 'Z' is the number of atoms in the unit cell that represents the closest packing sequenceABCABC, the number of tetrahedral voids
	(a) 0.732 - 1.000 (b) 0.414 - 0.732 (c) 0.225 - 0.414 (d) 0.155 - 0.225 What type of lattice is found in potassium chloride crystal [MP PMT 1996] (a) Face centred cubic (b) Body centred cubic (c) Simple cubic (d) Simple tetragonal The three dimensional graph of lattice points which sets the pattern for the whole lattice is called (a) Space lattice (b) Simple lattice	1.	(a) 1 (b) 2 (c) 3 (d) 4 Crystal packing If 'Z' is the number of atoms in the unit cell that represents the closest packing sequence ———————————————————————————————————
14.	(a) 0.732 -1.000 (b) 0.414 -0.732 (c) 0.225 -0.414 (d) 0.155 -0.225 What type of lattice is found in potassium chloride crystal [MP PMT 1996] (a) Face centred cubic (b) Body centred cubic (c) Simple cubic (d) Simple tetragonal The three dimensional graph of lattice points which sets the pattern for the whole lattice is called (a) Space lattice (b) Simple lattice (c) Unit cell (d) Crystal lattice	1.	(a) 1 (b) 2 (c) 3 (d) 4 Crystal packing If 'Z' is the number of atoms in the unit cell that represents the closest packing sequence ———————————————————————————————————
	(a) 0.732 - 1.000 (b) 0.414 - 0.732 (c) 0.225 - 0.414 (d) 0.155 - 0.225 What type of lattice is found in potassium chloride crystal [MP PMT 1996] (a) Face centred cubic (b) Body centred cubic (c) Simple cubic (d) Simple tetragonal The three dimensional graph of lattice points which sets the pattern for the whole lattice is called (a) Space lattice (b) Simple lattice	1.	(a) 1 (b) 2 (c) 3 (d) 4 Crystal packing If 'Z' is the number of atoms in the unit cell that represents the closest packing sequenceABCABC, the number of tetrahedral voids in the unit cell is equal to [AIIMS 2005] (a) Z (b) 2Z
14.	(a) 0.732 - 1.000 (b) 0.414 - 0.732 (c) 0.225 - 0.414 (d) 0.155 - 0.225 What type of lattice is found in potassium chloride crystal [MP PMT 1996] (a) Face centred cubic (b) Body centred cubic (c) Simple cubic (d) Simple tetragonal The three dimensional graph of lattice points which sets the pattern for the whole lattice is called (a) Space lattice (b) Simple lattice (c) Unit cell (d) Crystal lattice Crystals can be classified into basic crystal habits [MP PMT 1994] (a) 3 (b) 7	1.	(a) 1 (b) 2 (c) 3 (d) 4 Crystal packing If 'Z' is the number of atoms in the unit cell that represents the closest packing sequence ———————————————————————————————————
14.	(a) 0.732 - 1.000 (b) 0.414 - 0.732 (c) 0.225 - 0.414 (d) 0.155 - 0.225 What type of lattice is found in potassium chloride crystal [MP PMT 1996] (a) Face centred cubic (b) Body centred cubic (c) Simple cubic (d) Simple tetragonal The three dimensional graph of lattice points which sets the pattern for the whole lattice is called (a) Space lattice (b) Simple lattice (c) Unit cell (d) Crystal lattice Crystals can be classified into basic crystal habits [MP PMT 1994] (a) 3 (b) 7 (c) 14 (d) 4		(a) 1 (b) 2 (c) 3 (d) 4 Crystal packing If 'Z' is the number of atoms in the unit cell that represents the closest packing sequenceABCABC, the number of tetrahedral voids in the unit cell is equal to [AIIMS 2005] (a) Z (b) 2Z (c) Z/2 (d) Z/4
14.	(a) 0.732 - 1.000 (b) 0.414 - 0.732 (c) 0.225 - 0.414 (d) 0.155 - 0.225 What type of lattice is found in potassium chloride crystal [MP PMT 1996] (a) Face centred cubic (b) Body centred cubic (c) Simple cubic (d) Simple tetragonal The three dimensional graph of lattice points which sets the pattern for the whole lattice is called (a) Space lattice (b) Simple lattice (c) Unit cell (d) Crystal lattice Crystals can be classified into basic crystal habits [MP PMT 1994] (a) 3 (b) 7		(a) 1 (b) 2 (c) 3 (d) 4 Crystal packing If 'Z' is the number of atoms in the unit cell that represents the closest packing sequenceABCABC, the number of tetrahedral voids in the unit cell is equal to [AIIMS 2005] (a) Z (b) 2Z (c) Z/2 (d) Z/4 The close packing represents ABC ABC order of (a) Body centred cubic packing (b) Face centred cubic packing
14.	(a) 0.732 - 1.000 (b) 0.414 - 0.732 (c) 0.225 - 0.414 (d) 0.155 - 0.225 What type of lattice is found in potassium chloride crystal [MP PMT 1996] (a) Face centred cubic (b) Body centred cubic (c) Simple cubic (d) Simple tetragonal The three dimensional graph of lattice points which sets the pattern for the whole lattice is called (a) Space lattice (b) Simple lattice (c) Unit cell (d) Crystal lattice Crystals can be classified into basic crystal habits [MP PMT 1994] (a) 3 (b) 7 (c) 14 (d) 4 How many molecules are there in the unit cell of sodium chloride [MP PMT 1996; MP PET 1997] (a) 2 (b) 4		(a) 1 (b) 2 (c) 3 (d) 4 Crystal packing If 'Z' is the number of atoms in the unit cell that represents the closest packing sequenceABCABC, the number of tetrahedral voids in the unit cell is equal to [AIIMS 2005] (a) Z (b) 2 Z (c) Z/2 (d) Z/4 The close packing represents ABCABC order of (a) Body centred cubic packing (b) Face centred cubic packing (c) Simple cubic packing
14. 15.	(a) 0.732 - 1.000 (b) 0.414 - 0.732 (c) 0.225 - 0.414 (d) 0.155 - 0.225 What type of lattice is found in potassium chloride crystal [MP PMT 1996] (a) Face centred cubic (b) Body centred cubic (c) Simple cubic (d) Simple tetragonal The three dimensional graph of lattice points which sets the pattern for the whole lattice is called (a) Space lattice (b) Simple lattice (c) Unit cell (d) Crystal lattice Crystals can be classified into basic crystal habits [MP PMT 1994] (a) 3 (b) 7 (c) 14 (d) 4 How many molecules are there in the unit cell of sodium chloride [MP PMT 1996; MP PET 1997] (a) 2 (b) 4 (c) 6 (d) 8	2.	(a) 1 (b) 2 (c) 3 (d) 4 Crystal packing If 'Z' is the number of atoms in the unit cell that represents the closest packing sequenceABCABC, the number of tetrahedral voids in the unit cell is equal to [AIIMS 2005] (a) Z (b) 2 Z (c) Z/2 (d) Z/4 The close packing represents ABC ABC order of (a) Body centred cubic packing (b) Face centred cubic packing (c) Simple cubic packing (d) Hexagonal cubic closed packing
14.	(a) 0.732 - 1.000 (b) 0.414 - 0.732 (c) 0.225 - 0.414 (d) 0.155 - 0.225 What type of lattice is found in potassium chloride crystal [MP PMT 1996] (a) Face centred cubic (b) Body centred cubic (c) Simple cubic (d) Simple tetragonal The three dimensional graph of lattice points which sets the pattern for the whole lattice is called (a) Space lattice (b) Simple lattice (c) Unit cell (d) Crystal lattice Crystals can be classified into basic crystal habits [MP PMT 1994] (a) 3 (b) 7 (c) 14 (d) 4 How many molecules are there in the unit cell of sodium chloride [MP PMT 1996; MP PET 1997] (a) 2 (b) 4		(a) 1 (b) 2 (c) 3 (d) 4 Crystal packing If 'Z' is the number of atoms in the unit cell that represents the closest packing sequence ———————————————————————————————————
14. 15.	(a) 0.732 - 1.000 (b) 0.414 - 0.732 (c) 0.225 - 0.414 (d) 0.155 - 0.225 What type of lattice is found in potassium chloride crystal [MP PMT 1996] (a) Face centred cubic (b) Body centred cubic (c) Simple cubic (d) Simple tetragonal The three dimensional graph of lattice points which sets the pattern for the whole lattice is called (a) Space lattice (b) Simple lattice (c) Unit cell (d) Crystal lattice Crystals can be classified into basic crystal habits [MP PMT 1994] (a) 3 (b) 7 (c) 14 (d) 4 How many molecules are there in the unit cell of sodium chloride [MP PMT 1996; MP PET 1997] (a) 2 (b) 4 (c) 6 (d) 8 In a crystal, the atoms are located at the position of [AMU 1985] (a) Maximum P.E. (b) Minimum P.E.	2.	(a) 1 (b) 2 (c) 3 (d) 4 Crystal packing If 'Z' is the number of atoms in the unit cell that represents the closest packing sequence ———————————————————————————————————
14. 15. 16.	(a) 0.732 - 1.000 (b) 0.414 - 0.732 (c) 0.225 - 0.414 (d) 0.155 - 0.225 What type of lattice is found in potassium chloride crystal [MP PMT 1996] (a) Face centred cubic (b) Body centred cubic (c) Simple cubic (d) Simple tetragonal The three dimensional graph of lattice points which sets the pattern for the whole lattice is called (a) Space lattice (b) Simple lattice (c) Unit cell (d) Crystal lattice Crystals can be classified into basic crystal habits [MP PMT 1994] (a) 3 (b) 7 (c) 14 (d) 4 How many molecules are there in the unit cell of sodium chloride [MP PMT 1996; MP PET 1997] (a) 2 (b) 4 (c) 6 (d) 8 In a crystal, the atoms are located at the position of [AMU 1985] (a) Maximum P.E. (b) Minimum P.E. (c) Zero P.E. (d) Infinite P.E.	2.	(a) 1 (b) 2 (c) 3 (d) 4 Crystal packing If 'Z' is the number of atoms in the unit cell that represents the closest packing sequence ———————————————————————————————————
14. 15.	(a) 0.732 – 1.000 (b) 0.414 – 0.732 (c) 0.225 – 0.414 (d) 0.155 – 0.225 What type of lattice is found in potassium chloride crystal [MP PMT 1996] (a) Face centred cubic (b) Body centred cubic (c) Simple cubic (d) Simple tetragonal The three dimensional graph of lattice points which sets the pattern for the whole lattice is called (a) Space lattice (b) Simple lattice (c) Unit cell (d) Crystal lattice Crystals can be classified into basic crystal habits [MP PMT 1994] (a) 3 (b) 7 (c) 14 (d) 4 How many molecules are there in the unit cell of sodium chloride [MP PMT 1996; MP PET 1997] (a) 2 (b) 4 (c) 6 (d) 8 In a crystal, the atoms are located at the position of [AMU 1985] (a) Maximum P.E. (b) Minimum P.E. (c) Zero P.E. (d) Infinite P.E. The total number of lattice arrangements in different	2.	(a) 1 (b) 2 (c) 3 (d) 4 Crystal packing If 'Z' is the number of atoms in the unit cell that represents the closest packing sequence ———————————————————————————————————
14. 15. 16.	(a) 0.732 - 1.000 (b) 0.414 - 0.732 (c) 0.225 - 0.414 (d) 0.155 - 0.225 What type of lattice is found in potassium chloride crystal [MP PMT 1996] (a) Face centred cubic (b) Body centred cubic (c) Simple cubic (d) Simple tetragonal The three dimensional graph of lattice points which sets the pattern for the whole lattice is called (a) Space lattice (b) Simple lattice (c) Unit cell (d) Crystal lattice Crystals can be classified into basic crystal habits [MP PMT 1994] (a) 3 (b) 7 (c) 14 (d) 4 How many molecules are there in the unit cell of sodium chloride [MP PMT 1996; MP PET 1997] (a) 2 (b) 4 (c) 6 (d) 8 In a crystal, the atoms are located at the position of [AMU 1985] (a) Maximum P.E. (b) Minimum P.E. (c) Zero P.E. (d) Infinite P.E. The total number of lattice arrangements in different crystal systems is [KCET (Engs.) 2001] (a) 3 (b) 7	2. 3.	(a) 1 (b) 2 (c) 3 (d) 4 Crystal packing If 'Z' is the number of atoms in the unit cell that represents the closest packing sequence ———————————————————————————————————
14. 15. 16.	(a) 0.732 - 1.000 (b) 0.414 - 0.732 (c) 0.225 - 0.414 (d) 0.155 - 0.225 What type of lattice is found in potassium chloride crystal [MP PMT 1996] (a) Face centred cubic (b) Body centred cubic (c) Simple cubic (d) Simple tetragonal The three dimensional graph of lattice points which sets the pattern for the whole lattice is called (a) Space lattice (b) Simple lattice (c) Unit cell (d) Crystal lattice Crystals can be classified into basic crystal habits [MP PMT 1994] (a) 3 (b) 7 (c) 14 (d) 4 How many molecules are there in the unit cell of sodium chloride [MP PMT 1996; MP PET 1997] (a) 2 (b) 4 (c) 6 (d) 8 In a crystal, the atoms are located at the position of [AMU 1985] (a) Maximum P.E. (b) Minimum P.E. (c) Zero P.E. (d) Infinite P.E. The total number of lattice arrangements in different crystal systems is [KCET (Engg.) 2001] (a) 3 (b) 7 (c) 8 (d) 14	2. 3.	(a) 1 (b) 2 (c) 3 (d) 4 Crystal packing If 'Z' is the number of atoms in the unit cell that represents the closest packing sequence ———————————————————————————————————
14. 15. 16.	(a) 0.732 – 1.000 (b) 0.414 – 0.732 (c) 0.225 – 0.414 (d) 0.155 – 0.225 What type of lattice is found in potassium chloride crystal [MP PMT 1996] (a) Face centred cubic (b) Body centred cubic (c) Simple cubic (d) Simple tetragonal The three dimensional graph of lattice points which sets the pattern for the whole lattice is called (a) Space lattice (b) Simple lattice (c) Unit cell (d) Crystal lattice Crystals can be classified into basic crystal habits [MP PMT 1994] (a) 3 (b) 7 (c) 14 (d) 4 How many molecules are there in the unit cell of sodium chloride [MP PMT 1996; MP PET 1997] (a) 2 (b) 4 (c) 6 (d) 8 In a crystal, the atoms are located at the position of [AMU 1985] (a) Maximum P.E. (b) Minimum P.E. (c) Zero P.E. (d) Infinite P.E. The total number of lattice arrangements in different crystal systems is [KCET (Engg.) 2001] (a) 3 (b) 7 (c) 8 (d) 14 Monoclinic crystal has dimension [DCE 2000]	2. 3. 4.	(a) 1 (b) 2 (c) 3 (d) 4 Crystal packing If 'Z' is the number of atoms in the unit cell that represents the closest packing sequence ———————————————————————————————————
14. 15. 16.	(a) $0.732-1.000$ (b) $0.414-0.732$ (c) $0.225-0.414$ (d) $0.155-0.225$ What type of lattice is found in potassium chloride crystal [MP PMT 1996] (a) Face centred cubic (b) Body centred cubic (c) Simple cubic (d) Simple tetragonal The three dimensional graph of lattice points which sets the pattern for the whole lattice is called (a) Space lattice (b) Simple lattice (c) Unit cell (d) Crystal lattice Crystals can be classified into basic crystal habits [MP PMT 1994] (a) 3 (b) 7 (c) 14 (d) 4 How many molecules are there in the unit cell of sodium chloride [MP PMT 1996; MP PET 1997] (a) 2 (b) 4 (c) 6 (d) 8 In a crystal, the atoms are located at the position of [AMU 1985] (a) Maximum P.E. (b) Minimum P.E. (c) Zero P.E. (d) Infinite P.E. The total number of lattice arrangements in different crystal systems is [KCET (Engg.) 2001] (a) 3 (b) 7 (c) 8 (d) 14 Monoclinic crystal has dimension [DCE 2000] (a) $a \neq b \neq c, \alpha = \gamma = 90^{\circ}, \beta \neq 90^{\circ}$	2. 3.	(a) 1 (b) 2 (c) 3 (d) 4 Crystal packing If 'Z' is the number of atoms in the unit cell that represents the closest packing sequence ———————————————————————————————————
14. 15. 16.	(a) $0.732-1.000$ (b) $0.414-0.732$ (c) $0.225-0.414$ (d) $0.155-0.225$ What type of lattice is found in potassium chloride crystal [MP PMT 1996] (a) Face centred cubic (b) Body centred cubic (c) Simple cubic (d) Simple tetragonal The three dimensional graph of lattice points which sets the pattern for the whole lattice is called (a) Space lattice (b) Simple lattice (c) Unit cell (d) Crystal lattice (c) Unit cell (d) Crystal lattice (e) Unit cell (d) Crystal lattice (for equation of the context	2. 3. 4.	(a) 1 (b) 2 (c) 3 (d) 4 Crystal packing If 'Z' is the number of atoms in the unit cell that represents the closest packing sequence ——ABCABC——, the number of tetrahedral voids in the unit cell is equal to [AIIMS 2005] (a) Z (b) 2Z (c) Z/2 (d) Z/4 The close packing represents ABCABC order of (a) Body centred cubic packing (b) Face centred cubic packing (c) Simple cubic packing (d) Hexagonal cubic closed packing The arrangement ABCABCABC is referred as [MP PET 2001] (a) Octahedral close packing (b) Hexagonal close packing (c) Tetragonal close packing (d) Cubic close packing The number of close neighbour in a body-centred cubic lattice of identical sphere is [MP PET 2001] (a) 8 (b) 6 (c) 4 (d) 2 The number of equidistant oppositely charged ions in a
14. 15. 16.	(a) $0.732-1.000$ (b) $0.414-0.732$ (c) $0.225-0.414$ (d) $0.155-0.225$ What type of lattice is found in potassium chloride crystal [MP PMT 1996] (a) Face centred cubic (b) Body centred cubic (c) Simple cubic (d) Simple tetragonal The three dimensional graph of lattice points which sets the pattern for the whole lattice is called (a) Space lattice (b) Simple lattice (c) Unit cell (d) Crystal lattice Crystals can be classified into basic crystal habits [MP PMT 1994] (a) 3 (b) 7 (c) 14 (d) 4 How many molecules are there in the unit cell of sodium chloride [MP PMT 1996; MP PET 1997] (a) 2 (b) 4 (c) 6 (d) 8 In a crystal, the atoms are located at the position of [AMU 1985] (a) Maximum P.E. (b) Minimum P.E. (c) Zero P.E. (d) Infinite P.E. The total number of lattice arrangements in different crystal systems is [KCET (Engg.) 2001] (a) 3 (b) 7 (c) 8 (d) 14 Monoclinic crystal has dimension [DCE 2000] (a) $a \neq b \neq c, \alpha = \gamma = 90^{\circ}, \beta \neq 90^{\circ}$	2. 3. 4.	(a) 1 (b) 2 (c) 3 (d) 4 Crystal packing If 'Z' is the number of atoms in the unit cell that represents the closest packing sequence ———————————————————————————————————

6.		e in BCC and FCC type crystals		(-) V7	[UPSEAT 2004]
		imber of atoms of Na and Mg		(a) XZ	(b) XZ_2
	present in the unit cell of	f their respective crystal is		(c) X_2Z	(d) X_2Z_3
	(a) 4 and 2	[AIEEE 2002] (b) 9 and 14	20.	the corners of a cu	has a unit cell consisting of <i>A</i> ions a be and <i>B</i> ions on the centres of the c. The empirical formula for this
_	(c) 14 and 9	(d) 2 and 4		compound would be	
7•	An AB_2 type structure is			(a) <i>AB</i>	(b) A_2B
	(a) <i>NaCl</i>	(b) Al_2O_3		(c) AB_3	(d) A_3B
	(c) <i>CaF</i> ₂	(d) N ₂ O	21.	The vacant space in	3
8.	Potassium crystallizes wi	ith a [MP PET/PMT 1998]	21,	(a) 32%	(b) 23%
•	(a) Face-centred cubic l			(c) 26%	(d) None of these
	(b) Body-centred cubic		22.	• •	hedral voids in a unit cell of a cubica
	(c) Simple cubic lattice			closest packed struc	
	(d) Orthorhombic lattic	e		(a) 1	(b) 2
9.	* *	s per unit in a crystal is 2, the		(c) 4	(d) 8
,	structure of crystal is (a) Octahedral		23.		ed structure of a metallic lattice, the neighbours of a metallic atom is
	(b) Body centred cubic l	occ		(a) Twelve	[JIPMER 2002] (b) Four
	(c) Face centred cubic fe	ec		(c) Eight	(d) Six
	(d) simple cubic		0.4		ucture, the number of formula unit
10.	The intermetallic compo	ound <i>LiAg</i> crystallizes in cubic	24.	per unit cell is equa	
	-	ium and silver have coordination		(a) 1	(b) 2
	number of eight. The cry	stal class is		(c) 3	(d) 4
		[CBSE PMT 1997]	25.	· · ·	cking is found in crystal lattice of
	(a) Simple cube	(b) Body-centred cube	Ü	0 1	[MH CET 2002
	(c) Face-centred cube	(d) None of these		(a) <i>Na</i>	(b) <i>Mg</i>
11.		dral sites per sphere in a fcc		(c) <i>Al</i>	(d) None of these
	structure is	[MP PMT 2000, 01]	26.	` '	argest radius from the following ions
	(a) 8	(b) 4		(a) Na +	(b) Mg^{2+}
40	(c) 2	(d) 1		• •	
12.	as	arrangement of ions is described [MP PMT 1994]		(c) Al ³⁺	(d) Si ⁴⁺
	(a) ABC ABA	(b) ABC ABC	ľ	Mathematical and	alysis of cubic system and
	(c) ABABA	(d) ABBAB		Brag	gg's equation
13.	An example of a body cu				
	(a) Sodium	(b) Magnesium	1.	The formula for det	ermination of density of unit cell is
	(c) Zinc	(d) Copper			
14.	An example of fluorite st	ructure is		(a) $\frac{\partial}{\partial N \times M} g cm^{-3}$	(b) $\frac{N \times M}{a^3 \times N_o} g cm^{-3}$
	(a) NaF	(b) SrF_2			v
	(c) AlCl ₃	(d) SiF ₄		(c) $\frac{a \times M}{N \times N_o} g cm^{-3}$	(d) $\frac{M \times N_o}{a^3 \times N} g cm^{-3}$
15.	voids are occupied?	ng crystals alternate tetrahedral [IIT 2005]	2.		has $NaCl$ type structure. What is the F^- ions if cell edge is $a \ cm$
	(a) NaCl	(b) ZnS		(a) 2 <i>a cm</i>	(b) a/2 cm
_	(c) CaF_2	(d) Na_2O		(c) 4a cm	(d) $a/4 cm$
16.		ontains rock salt structure			
	(a) SrF_2	(b) <i>MgO</i>	3.		rring in the <i>bcc</i> structure ha ells. The total number of atoms of the
	(c) Al_2O_3	(d) All		element in these cel	
17.	In the fluorite structur Ca^{2+} ion is	e, the coordination number of		(a) 24.16×10^{23} (c) 6.04×10^{23}	(b) 36.18×10^{23}
	(a) 4	(b) 6	4.		(d) 12.08×10^{23} sent in the centre of the cube, the
	(c) 8	(d) 3	4.		t atom per unit cell is
18.		ed atoms to tetrahedral holes in [Pb. PMT 1998]		(a) $\frac{1}{4}$	(b) 1
	(a) 1:1	(b) 1:2		(a) 1	(d) ¹
	(c) 1:3	(d) 2:1		(c) $\frac{1}{2}$	(d) $\frac{1}{8}$

5.

CLICK HERE

[MP PMT 1993]

For an ionic crystal of the general formula AX and coordination number 6, the value of radius ratio will be

A solid is made of two elements $\, X \,$ and $\, Z \,$. The atoms $\, Z \,$

are in CCP arrangement while the atom $\, X \,$ occupy all the tetrahedral sites. What is the formula of the compound

(a) Greater than 0.73			(c) $\frac{\sqrt{3}a}{2}$	a = 2a
(b) In between 0.73 and	•		(c) ${2}$	(d) $\frac{2a}{\sqrt{3}}$
(c) In between 0.41 and (d) Less than 0.22	0.22	17.	Sodium metal crystallizes	as a body centred cubic lattice
* *	ontained (i) in one body centred	,	with the cell edge 4.29 Å	. What is the radius of sodium
cubic unit cell and (ii) in	one face centred cubic unit cell,		atom	F. ******* 7
is	(b) In (i) a and in (ii) a			[AIIMS 1999]
(a) In (i) 2 and in (ii) 4 (c) In (i) 4 and in (ii) 2	(b) In (i) 3 and in (ii) 2 (d) In (i) 2 and in (ii) 3		(a) $1.857 \times 10^{-8} cm$	
	ructure. It has an edge length of		(c) $3.817 \times 10^{-8} cm$	(d) $9.312 \times 10^{-7} cm$
•	terionic distance between Cs^+	18.	For an ionic crystal of	the type AB , the value of
and Br^- ions is				0.40. The value suggests that
	[IIT 1995]		the crystal structure should (a) Octahedral	(b) Tetrahedral
(a) 1.86 Å	(b) 3.72 Å		(c) Square planar	(d) Plane triangle
(c) 4.3 Å	(d) 7.44 Å	19.		ructure with nearest neighbour
In octahedral holes (voice	ls)	-).		nic weight is 39. Its density (in
(a) A simple triangular v	void surrounded by four spheres		$kg m^{-3}$) will be	[AIIMS 1991]
(b) A bi-triangular void	surrounded by four spheres		(a) 454	(b) 804
(c) A bi-triangular void	surrounded by six spheres		(a) 454 (c) 852	(d) 908
(d) A bi-triangular void	surrounded by eight spheres		(6) 0,02	(r)
Bragg's law is given by th	e equation [MP PMT 1995, 2002]	20.	If the value of ionic radiu	s ratio $\left(\frac{r_c}{r_a}\right)$ is 0.52 in an ionic
(a) $n\lambda = 2\theta \sin \theta$	(b) $n\lambda = 2d\sin\theta$			rical arrangement of ions in
(c) $2n\lambda = d\sin\theta$	(d) $n \frac{\theta}{\theta} - \frac{d}{\theta} \sin \theta$		crystal is	real arrangement of fons in
(c) $2n\pi - u \sin \theta$	(d) $n\frac{\pi}{2} = \frac{\pi}{2}\sin\theta$		(a) Tetrahedral	(b) Planar
The number of atoms in	n 100 g of an fcc crystal with		(c) Octahedral	(d) Pyramidal
density $d = 10 g/cm^3$ a	nd cell edge equal to 100 pm, is	21.		olecules contained in one face a monoatomic substance is
equal to	[CBSE PMT 1994; KCET 2002]			SE PMT 1989, 96; NCERT 1990;
(a) 4×10^{25}	(b) 3×10^{25}		2- 7-7/71/	MP PET 1993; KCET 1999]
(c) 2×10^{25}	(d) 1×10^{25}		(a) 1	(b) 2
` '	of the following ionic compounds		(c) 4	(d) 6
would you expect maxin	num distance between centres of	22.	The number of atoms/me centered cubic unit cell is	olecules contained in one body
cations and anions	[CBSE PMT 1998]		(a) 1	(b) 2
(a) LiF	(b) CsF		(c) 4	(d) 6
(c) CsI	(d) LiI	23.	It the distance between	Na^+ and Cl^- ions in sodium
The number of unit cells	in 58.5 g of NaCl is nearly			, the length of the edge of the
	[MP PMT 2000, 01]		unit cell is	[KCET 2004]
(a) 6×10^{20}	(b) 3×10^{22}		(a) 4X pm (c) X/2 pm	(b) X/4 pm (d) 2X pm
(c) 1.5×10^{23}	(d) 0.5×10^{24}	24.	_	CC Xe crystal is 620 pm. The
	e present in a cube-shaped ideal	-4.	radius of <i>Xe</i> atom is	[MP PET 2004]
•	mass $1.00 g$ [Atomic masses:		(a) 219.25 Pm	(b) 235.16 Pm
Na = 23, Cl = 35.5	[AIEEE 2003]		(c) 189.37 Pm	(d) 209.87 Pm
(a) 2.57×10^{21} unit cell	s (b) 5.14×10^{21} unit cells	25.	In orthorhombic, the valu	e of a, b and c are respectively
(c) 1.28×10^{21} unit cells	s (d) 1.71×10^{21} unit cells		$4.2\text{\AA}, 8.6\text{\AA}$ and 8.3\AA . g	iven the molecular mass of the
* *	on for diffraction of X -rays,		solute is 155 gm mol ⁻¹ an	and that of density is $3.3 gm / cc$,
n represents for	[MP PMT 2000]		the number of formula un	
(a) Quantum number	(b) An integer			[Orrisa JEE 2005]
(c) Avogadro's numbers			(a) 2	(b) 3
	ic cell, an atom at the face	- ((c) 4	(d) 6
contributes to the unit ce	Engg./Med.) 2000; AFMC 2001]	26.		e and the edge length of its unit e of the unit cell in cm^3 will be
(a) 1/4 part	(b) 1/8 part		cen is 5.04 A. The volume	[Orrisa JEE 2005]
(c) 1 part	(d) 1/2 part		(a) $1.6 \times 10^{21} cm^3$	(b) $2.81 \times 10^{-23} cm^3$
-	or cesium chloride crystal will be		(c) $6.02 \times 10^{-23} cm^3$	(d) $6.6 \times 10^{-24} cm^3$
	[MP PET 2002]	27.		(d) 6.6×10 cm cell edge length is [DPMT 2005]
(a) a		- /•	4	
(a) <i>a</i>	(b) $\frac{a}{2}$		(a) $\frac{4}{\sqrt{3}}r$	(b) $\frac{4}{\sqrt{2}}r$

CLICK HERE

6.

7•

8.

9.

10.

11.

12.

13.

14.

15.

16.

(c) 2r	(d)	$\frac{\sqrt{3}}{2}$
--------	-----	----------------------

Crystal structure and Coordination number

1.	the corners of a cubic latti edges and 'Na' atoms at	which 'W' atoms are located at ice 'O' atoms at the centre of the centre of the cube. The
	formula for the compound	is [KCET 1996]
	(a) $NaWO_2$	(b) $NaWO_3$
	(c) Na_2WO_3	(d) NaWO ₄
2.	Potassium crystallizes in	a <i>bcc</i> lattice, hence the

coordination number of potassium in potassium metal is [KCEE 1993]

(c) 6 (d) 8 Body centered cubic lattice has a coordination number of 3. [AIIMS 1996; MP PMT 2002]

(b) 8 (c) 12 (d) 6

A compound is formed by elements A and B. This 4. crystallizes in the cubic structure when atoms A are the corners of the cube and atoms B are at the centre of the body. The simplest formula of the compounds is

[KCET 1993; CBSE PMT 2000; Kerala PMT 2002]

(b) 4

(a) AB

(b) AB_2

(c) A_2B

(a) o

(d) AB_4

Coordination number for Cu is [AMU 1982] 5.

(a) 1 (d) 12

In the crystal of CsCl, the nearest neighbours of each 6. Cs ion are [MP PET 1993]

(a) Six chloride ions

(b) Eight chloride ions

(c) Six Cs ions

(d) Eight Cs ions

In a cubic structure of compound which is made from X7. and *Y*, where *X* atoms are at the corners of the cube and Y at the face centres of the cube. The molecular formula of the compound is [AIIMS 2000]

(a) X_2Y

(b) X_3Y

(c) XY_2

(d) XY_3

Ferrous oxide has a cubic structure and each edge of the 8. unit cell is 5.0 Å. Assuming density of the oxide as $4.0g-cm^{-3}$, then the number of Fe^{2+} and O^{2-} ions present in each unit cell will be [MP PET 2000]

(a) Four Fe^{2+} and four O^{2-}

(b) Two Fe^{2+} and four O^{2-}

(c) Four Fe^{2+} and two O^{2-}

(d) Three Fe^{2+} and three O^{2-}

Which of the following statements is not true about NaCl structure [DCE 2001]

(a) Cl^- ions are in fcc arrangement

(b) Na⁺ ions has coordination number 4

(c) Cl⁻ions has coordination number 6

(d) Each unit cell contains 4NaCl molecules

In CsCl structure, the coordination number of Cs⁺ is [MP PMT 2001]

(a) Equal to that of Cl^{-} , that is 6

(b) Equal to that of Cl^- , that is 8

(c) Not equal to that of Cl^- , that is 6

(d) Not equal to that of Cl^- , that is 8

In a solid 'AB' having the NaCl structure, 'A' atoms 11. occupy the corners of the cubic unit cell. If all the facecentered atoms along one of the axes are removed, then the resultant stoichiometry of the solid is [IIT Screening 2001]

(a) AB_{γ}

(b) A_2B

(c) A_4B_3

(d) A_3B_4

12. In solid CsCl each Cl is closely packed with how many Cs[MP PET 2003]

(a) 8

(b) 6

(c) 10

(d) 2

In A^+B^- ionic compound, radii of A^+ and B^- ions are $180 \ pm$ and $187 \ pm$ respectively. The crystal structure of this compound will be

(a) NaCl type

(b) CsCl type

(c) ZnS type

(d) Similar to diamond

In which of the following substances the carbon atom is arranged in a regular tetrahedral structure [NCERT 1978]

(a) Diamond

(b) Benzene

(c) Graphite

(d) Carbon black

The coordination number of a metal crystallizing in a 15. hexagonal close packed structure is

[NCERT 1978; IIT 1999]

(a) 4

(b) 12

(c) 8

(d) 6

The structure of MgO is similar to NaCl. What would be the coordination number of magnesium

(a) 2

(b) 4

(c) 6

(d) 8

How many chloride ions are there around sodium ion in 17. sodium chloride crystal [NCERT 1979, 80; CPMT 1988;

BHU 1982, 87; MP PET 1995, 99]

(a) 3

(b) 8

(c) 4

(d) 6

Most crystals show good cleavage because their atoms, ions or molecules are [CBSE PMT 1991]

(a) Weakly bonded together

(b) Strongly bonded together

(c) Spherically symmetrical

(d) Arranged in planes

An example of a non-stoichiometric compound is 19.

[NCERT 1983]

(a) Al_2O_3

(b) Fe_3O_4

(c) NiO_2

(d) PbO

If the radius ratio is in the range of 0.731-1, then the coordination number will be

(a) 2

(b) 4

(c) 6

(d) 8

If the radius ratio is in the range of 0.414 - 0.732, then 21. the coordination number will be

(a) 2

(b) 4

(c) 6

(d) 8

What is the coordination number of sodium in Na_2O

[AIIMS 2003]

(a) 6

(b) 4

(c) 8

(d) 2

The ratio of cationic radius to anionic radius in an ionic 23. crystal is greater than 0.732. Its coordination number is

[KCET 2003]

	(a) 6	(b) 8		(a) Electron are held in the voids of crystals
	(c) 1	(d) 4		(b) F - centre produces colour to the crystals
24.		nation number of Cs^+ ion is	F	(c) Conductivity of the crystal increases due to centre
	(a) 2 (c) 8	(b) 4 (d) 12	_	(d) All
0.5			4.	Doping of silicon (Si) with boron (B) leads to
25.	(a) fcc	is [NCERT 1982; BHU 1995] (b) bcc	-	[UPSEAT 2004]
	(c) Both (a) and (b)	(d) None		(a) n -type semiconductor (b) p -type semiconductor
26				(c) Metal (d) Insulator
26.	(a) 2	nation number of <i>Cl</i> ion is (b) 4	5.	If NaCl is doped with $10^{-3} mol \% SrCl_2$, then the
	(c) 6	(d) 8		concentration of cation vacancies will be
27.		the coordination number of		(a) $1 \times 10^{-3} mol\%$ (b) $2 \times 10^{-3} mol\%$
,	Zn^{2+} ion is			(c) $3 \times 10^{-3} mol\%$ (d) $4 \times 10^{-3} mol\%$
	(a) 2	(b) 4	6.	In the laboratory, sodium chloride is made by burning
	(c) 6	(d) 8		the sodium in the atmosphere of chlorine which is yellow
28.	Coordination number of N	a ⁺ ion in rock salt is		in colour. The cause of yellow colour is
		[BVP 2004]		(a) Presence of Na^+ ions in the crystal lattice
	(a) 12	(b) 4		(b) Presence of Cl^- ions in the crystal lattice
	(c) 8	(d) 6		(c) Presence of electron in the crystal lattice
29.	The number of Cl^- ions crystal lattice is	around one Na ⁺ in NaCl		(d) Presence of face centered cubic crystal lattice
	(a) 12	[MP PET 1996; BVP 2004] (b) 4	7•	Frenkel defect is caused due to [MP PET 1994]
	(c) 8	(d) 6		(a) An ion missing from the normal lattice site creating a vacancy
30.	The number of atoms	present in unit cell of a		(b) An extra positive ion occupying an interstitial
		imple cubic lattice is [Pb. PMT:	2004]	position in the lattice
	(a) 6 (c) 2	(b) 3 (d) 1		(c) An extra negative ion occupying an interstitial position in the lattice
31.		of a metal crystallizing in a		(d) The shift of a positive ion from its normal lattice site
J-1		ep structure is [MP PMT 2004]		to an interstitial site
	(a) 12	(b) 8	8.	Which one of the following has Frenkel defect
	(c) 4	(d) 6		[MP PMT 2000]
32.	Which of the following stat	ement(s) is(are) correct [IIT 1998]		(a) Sodium chloride(b) Graphite(c) Silver bromide(d) Diamond
	(a) The coordination nur	nber of each type of ion in	9.	Schottky defect generally appears in [DCE 2004]
	CsCl crystal is 8		۶۰	(a) NaCl (b) KCl
	(b) A metal that crystall coordination number of	izes in <i>bcc</i> structure has a		(c) CsCl (d) All of these
		crystal shares some of its ions	10.	Schottky defect in crystals is observed when
	with other unit cells			[CBSE PMT 1998; KCET 2002]
	-	it cell in NaCl is 552 pm		(a) Density of crystal is increased (b) Unequal number of estions and enions are missing
	$(r_{Na^+} = 95 \ pm; \ r_{Cl^-} = 1)$	181 <i>pm</i>)		(b) Unequal number of cations and anions are missing from the lattice
33.	The co-ordination number	of Na ⁺ in NaCl is		(c) An ion leaves its normal site and occupies an
		[Orrisa JEE 2005]		interstitial site
	(a) 6	(b) 8		(d) Equal number of cations and anions are missing from the lattice
34.	(c) 4 In the calcium fluoride	(d) 1 structure the co-ordination	11.	Ionic solids, with Schottky defects, contain in their
94,		nions are respectively [J & K 20	05]	structure
	(a) 6, 6	(b) 8, 4		[CBSE PMT 1994]
	(c) 4, 4	(d) 4, 8		(a) Equal number of cation and anion vacancies(b) Anion vacancies and interstitial anions
	Defects in	crystal		(c) Cation vacancies only
	Deletta III	orystar		(d) Cation vacancies and interstitial cations
1.		ectric signals on application of	12.	The following is not a function of an impurity present in
	pressure. This phenomenor			a crystal [MP PET 1995]
	(a) Pyroelectricity	(b) Ferroelectricity		(a) Establishing thermal equilibrium(b) Having tendency to diffuse
0	(c) PeizoelectricityWhich defect causes decrea	(d) Ferrielectricity		(c) Contributing to scattering
2.	vymen defect causes decrea	[KCET 2000, 05]		(d) Introducing new electronic energy levels
	(a) Frenkel	(b) Schottky	13.	Due to Frenkel defect, the density of ionic solids
	(c) Interstitial	(d) F – centre		[MP PET 1996; MP PMT 2002]
3.	The correct statement rega	rding F – centre is		(a) Increases (b) Decreases (c) Poes pet change (d) Changes
	_			(c) Does not change (d) Changes

14.	Point defects are present in [MP PMT 1997]		_	(b) Orthorhombic
	(a) Ionic solids (b) Molecular solids			(d) Triclinic
	(c) Amorphous solids (d) Liquids	5∙	Which of the following mole symmetry	ecules has three-fold axis of [UPSEAT 2004]
15.	If a non-metal is added to the interstitial sites of a metal then the metal becomes [DCE 2001]		• •	(b) C_2H_4
	(a) Softer (b) Less tensile		-	= :
	(c) Less malleable (d) More ductile			(d) SO ₂
16.	In $AgBr$ crystal, the ion size lies in the order	6.	Which one possess a antifluo	(b) MgO
	$Ag^+ \ll Br^-$. The $AgBr$ crystal should have the			., .
	following characteristics			(d) Al_2O_3
	(a) Defectless (perfect) crystal	7•	_	s the biggest ion[MP PET 1993]
	(b) Schottky defect only		()	(b) Ba +2
	(c) Frenkel defect only			(d) Na ⁺
4=	(d) Both Schottky and Frenkel defects Frenkel and Schottly defects are	8.	The edge length of face	
17.	Frenkel and Schottky defects are [BHU 2003] (a) Nucleus defects (b) Non-crystal defects			the cation is $110 pm$, the
	(c) Crystal defects (d) None of these		radius of the anion is	[CBSE PMT 1998]
18.	Which one of the following is the most correct statement		(a) 285 pm	(b) 398 <i>pm</i>
	(a) Brass is an interstitial alloy, while steel is a			(d) 618 pm
	substitutional alloy	9.	An element (atomic mass	•
	(b) Brass is a substitutional alloy, while steel is an interstitial alloy	9.	structure has unit cell edge	-
	(c) Brass and steel are both substitutional alloys		element is	ioo pm. Then denoity of the
	(d) Brass and steel are both interstitial alloys			SSE PMT 1996; AIIMS 2002]
19.	The flame colours of metal ions are due to [KCET 2003]		(a) $10.376 \ g/cm^3$	(b) $5.188 \ g / cm^3$
	(a) Frenkel defect (b) Schottky defect		(c) 7.289 g/cm^3	(d) $2.144 \ g/cm^3$
	(c) Metal deficiency defect (d) Metal excess defect	10.	If the pressure on a NaCl	_
20.	Which one of the following crystals does not exhibit	10.	its coordination number will	
	Frenkel defect [MP PET 2002] (a) $AgBr$ (b) $AgCl$			(b) Decrease
	(c) KBr (d) ZnS			(d) Either (b) or (c)
21.	In a solid lattice the cation has left a lattice site and is	11.	The pyknometric density of	
	located at an interstitial position, the lattice defect is			its X-rays density is
	[AIIMS 1982, 1991; DCE 2002; J & K 2005] (a) Interstitial defect (b) Valency defect			ction of unoccupied sites in
	(c) Frenkel defect (d) Schottky defect		sodium chloride crystal is	[CBSE PMT 2003]
22.	When electrons are trapped into the crystal in anion		1 /	(b) 5.96
	vacancy, the defect is known as [BHU 2005] (a) Schotky defect (b) Frenkel defect			(d) 5.96×10^{-1}
	(c) Stoichiometric defect (d) F-centres	12.	Which of the following stater	5
23.	Schottky defect defines imperfection in the lattice		(a) It is a covalent compoun	[IIT 1996]
	structure of a [AIIMS 2002]		(b) It contains Cs^{3+} and Br	
	(a) Solid (b) Liquid (c) Gas (d) Plasma		(c) It contains Cs^+ and Br_3^-	
	(c) Gas (d) Hasina			
			(d) It contains Cs^+ , Br^- and	-
	Critical Thinking	13.	In which compound 8:8 coo	ordination is found [EAMCET 1984]
			(a) CsCl	(b) MgO
	Objective Questions			(d) All of these
	A	1.4		
1.	Amorphous solids are (a) Solid substance in real sense	14.	If the coordination of Ca	-
	(b) Liquid in real sense		coordination number of F^-	
	(c) Supercooled liquid			(b) 4 (d) 8
	(d) Substance with definite melting point	15.	For some crystals, the radius	
2.	Silicon is found in nature in the form of [MH CET 2002]		0.525, its coordination numb	per will be
	(a) Body centered cubic structure		(a) 2	(b) 4
	(b) Hexagonal close-packed structure(c) Network solid	16.	7 7	(d) 8 silicates is [UPSEAT 2002]
	(d) Face centered cubic structure	10.		(b) $[SiO_4]^{4-}$ tetrahedron
3.	A match box exhibits [MP PET 1993, 95]			
	(a) Cubic geometry (b) Monoclinic geometry		·	(d) SiO ₄ linear
	(c) Orthorhombic geometry (d) Tetragonal geometry	17.	What type of crystal defect below	is indicated in the diagram
4.	Which has no rotation of symmetry [Orrisa JEE 2004]		551011	

[AIEEE 2004]

 Na^+ $Cl^ Na^+$ $Cl^ Na^+$ $Cl^ Cl^ \square$ $Cl^ Na^+$ \square Na^+

 Na^+ $Cl^- \square$ $Cl^ Na^+$ Cl^-

 $Cl^ Na^+$ $Cl^ Na^+$ \square Na^+

- (a) Interstitial defect
- (b) Schottky defect
- (c) Frenkel defect
- (d) Frenkel and Schottky defects
- **18.** Which of the following is a three dimensional silicate

[MHCET 2003]

(a) Mica

(b) Spodumene

(c) Zeolite

(d) None of these

(e) 12

Read the assertion and reason carefully to mark the correct option out of the options given below:

- (a) If both assertion and reason are true and the reason is the correct explanation of the assertion.
- (b) If both assertion and reason are true but reason is not the correct explanation of the assertion.
- (c) If assertion is true but reason is false.
- (d) If the assertion and reason both are false.
- (e) If assertion is false but reason is true.

1. Assertion : Diamond is a precious stone.

Reason : Carbon atoms are tetrahedrally arranged

in diamond. [AIIMS 1994]

2. Assertion : In crystal lattice, the size of the cation is larger in a tetrahedral hole than in an

octahedral hole.

Reason : The cations occupy more space than

anions in crystal packing. [AIIMS 1996]

3. Assertion : Crystalline solids have short range

order.

Reason : Amorphous solids have long range

order.

Reason

[AIIMS 1999]

4. Assertion: In any ionic solid (MX) with Schottky

defects, the number of positive and

negative ions are same.

Reason : Equal number of cation and anion

vacancies are present.

[IIT Screening 2001]

5. Assertion: Space or crystal lattice differ in symmetry of the arrangement of points.

symmetry of the arrangement of points. $n\lambda = 2d \sin \theta$, is known as Bragg's

equation.

6. Assertion : In close packing of spheres, a tetrahedral

void is surrounded by four spheres whereas an octahedral void is

surrounded by six spheres.

Reason : A tetrahedral void has a tetrahedral

shape whereas an octahedral void has an

octahedral shape.

7. Assertion: Cyclic silicates and chain silicates have

the same general molecular formula.

Reason : In cyclic silicates, three corners of each

SiO₄ tetrahedron are shared while in chain silicates only two are shared with

other tetrahedra.

8. Assertion: The presence of a large number of

Schottky defects in NaCl lowers its

density.

Reason : In NaCl, there are approximately 10⁶

Schottky pairs per cm^3 at room

temperature.

9. Assertion: Anion vacancies in alkali halides are

produced by heating the alkali halide crystals with alkali metal vapour.

Reason : Electrons trapped in anion vacancies are

referred to as F -centres.

10. Assertion : Electrical conductivity of

semiconductors increases with

increasing temperature.

Reason : With increase in temperature, large

number of electrons from the valence band can jump to the conduction band.

11. Assertion : On heating ferromagnetic or

ferrimagnetic substances, they become

paramagnetic.

Reason : The electrons change their spin on

heating.

12. Assertion : Lead zirconate is a piezoelectric crystal.

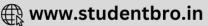
Reason : Lead zirconate crystals have no dipole

moment.

Answers

Type of solid and Their properties

1	a	2	b	3	а	4	а	5	b
6	С	7	С	8	b	9	d	10	d
11	b	12	а	13	С	14	С	15	а
16	а	17	а	18	d	19	С	20	С
21	b	22	d	23	d	24	d	25	а
26	d	27	а	28	а	29	d	30	d
31	d	32	а	33	С	34	а	35	b
36	а	37	а	38	b	39	С	40	ac


Crystallography and Lattice

1	b	2	С	3	b	4	d	5	а
6	а	7	b	8	d	9	d	10	b
11	С	12	С	13	а	14	С	15	b
16	b	17	b	18	b	19	а	20	а
21	С	22	d	23	С	24	d	25	b
26	b	27	С	28	d				

Crystal packing

1	b	2	b	3	d	4	a	5	b
6	d	7	С	8	b	9	b	10	b

11	d	12	С	13	a	14	b	15	b
16	b	17	С	18	b	19	С	20	С
21	а	22	С	23	a	24	d	25	b
26	а								

Mathematical analysis of cubic system and Bragg's equation

1	b	2	b	3	а	4	b	5	b
6	а	7	b	8	С	9	b	10	а
11	С	12	С	13	а	14	b	15	d
16	С	17	а	18	b	19	d	20	С
21	С	22	b	23	d	24	а	25	С
26	b	27	b						

Crystal structure and Coordination number

1	b	2	d	3	b	4	а	5	d
6	b	7	d	8	а	9	b	10	b
11	d	12	а	13	b	14	а	15	b
16	С	17	d	18	d	19	b	20	d
21	С	22	b	23	b	24	С	25	а
26	С	27	b	28	d	29	d	30	d
31	а	32	acd	33	а	34	b		

Defects in crystal

1	С	2	b	3	d	4	d	5	а
6	С	7	d	8	С	9	d	10	d
11	а	12	а	13	С	14	а	15	b
16	С	17	С	18	С	19	d	20	С
21	С	22	d	23	а				

Critical Thinking Questions

1	С	2	С	3	С	4	d	5	а
6	а	7	b	8	С	9	b	10	а
11	а	12	С	13	а	14	b	15	С
16	b	17	b	18	С				

Assertion & Reason

1	b	2	d	3	d	4	а	5	b
6	С	7	С	8	b	9	b	10	а
11	а	12	С						

Properties and Types of solids

- (a) Both gases and liquids possess fluidity and hence viscosity molecules in the solid state do not have translational motion.
- **2.** (b) It is a characteristic of liquid crystal.
- **3.** (a) $BaTiO_3$ is a ferroelectric compound.
- **5.** (b) The value of heat of fusion of *NaCl* is very high due to *fcc* arrangement of its ions.
- **6.** (c) Piezoelectric crystals are used in record player.
- **8.** (b) NaCl is a ionic solid in which constituent particles are positive (Na^+) and negative (Cl^-) ions.
- **9.** (d) Amorphous solids have short range order but no sharp in melting point.
- 10. (d) Solids have definite shape, size and rigidity.
- 12. (a) In crystalline solid there is perfect arrangement of the constituent particles only at OK. As the temperature increases the chance that a lattice site may be unoccupied by an ion increases. As the number of defects increases with temperature solid change in liquid.
- **13.** (c) Diamond is a covalent solid in which constituent particles are atoms.
- **14.** (c) Solid *NaCl* is a bad conductor of electricity because ions are not free to move.
- **15.** (a) The existence of a substance in more than one crystalline form is known as polymorphism.
- **16.** (a) Solids are also non-crystalline in nature.
- 17. (a) Ice has the lowest melting point out of the given solids, hence it has the weakest intermolecular forces.
- **19.** (c) All metals and some alloys are metallic crystal.
- **20.** (c) Iodine crystals are molecular crystals, in which constituent particles are molecules having interparticle forces are Vander Waal's forces.
- **21.** (b) Ionic solids have highest melting point due to strong electrostatic forces of attraction.
- **22.** (d) For *n*-type, impurity added to silicon should have more than 4 valence electrons.
- 23. (d) Glass is an amorphous solid.
- **25.** (a) Crystalline solids have regular arrangement of constituent particles, sharp melting points and are anisotropic.

- **26.** (d) Sugar is a crystalline solid while glass, rubber and plastic are amorphous solids.
- **28.** (a) MnO_2 is antiferromagnetic.
- **29.** (d) Graphite is sp^2 hybridised and a covalent crystal.
- **30.** (d) Ionic crystals exhibit non-directional properties of the bond.
- 31. (d) Ice is a molecular crystal in which the constituent units are molecules and the interparticle forces are hydrogen bonds.
- **32.** (a) Quartz is a covalent crystal having a framework of silicates or silica, *i.e.* a three dimensional network when all the four oxygen atoms of each of SiO_4 tetrahedron are shared.
- **33.** (c) Metallic crystals are good conductor of heat and current due to free electrons in them.
- **34.** (a) Silicon is a covalent crystal in which constituent particles are atoms.
- **35.** (b) LiF is an example of ionic crystal solid, in which constituent particles are positive (Li^+) and negative (F^-) ions.
- **36.** (a) Amorphous solids neither have ordered arrangement (*i.e.* no definite shape) nor have sharp melting point like crystals, but when heated, they become pliable until they assume the properties usually related to liquids. It is therefore they are regarded as super-cooled liquids.
- **37.** (a) Silicon is a semiconductor because it is a thermal active and its conductivity increased with increasing temperature.
- **38.** (b) Amorphous solids are isotropic, because of these substances show same properties in all directions.
- **39.** (c) Polymorphism is a ability of a substances which show two or more crystalline structure
- 40. (ac) Amorphous solids neither have ordered arrangement (i.e. no definite shape) nor have sharp melting point like crystals, but when heated, they become pliable until they assume the properties usually related to liquids. It is therefore they are regarded as super-cooled liquids.

Crystallography and Lattice

- 1. (b) A crystal system is hexagonal if its unit cell having $a=b\neq c$ axial ratio and $\alpha=\beta=90^\circ$, $\gamma=120^\circ$ axial angles.
- 2. (c) Rhombohedral crystal system $a=b=c \text{ , } \alpha=\beta=\gamma\neq90^{o}$ ex $NaNO_3$, $CaSO_4$, calcite $CaCO_3$, HgS
- 3. (b) Tetragonal system has the unit cell dimension $a = b \neq c, \alpha = \beta = \gamma = 90^{\circ}$.

- **5.** (a) Space lattice of CaF_2 is face centred cubic.
- **6.** (a) For body centred cubic arrangement coordination number is 8 and radius ratio (r_+/r_-) is 0.732-1.000.
- 7. (b) There are 14 Bravais lattices (space lattices).
- **8.** (d) Monoclinic sulphur is an example of Monoclinic crystal system.
- **10.** (b) r = 0.414 r.
- 11. (c) Each unit cell of *NaCl* contains 4 *NaCl* units.
- 12. (c) For tetrahedral arrangement co-ordination number is 4 and radius ratio (r_+/r_-) is 0.225-0.414.
- 13. (a) Face-centred cubic lattice found in KCl and NaCl.
- 14. (c) Definition of unit cell.
- 16. (b) In NaCl (rock salt): Number of Na^+ ions = 12 (at edge centers) $\times \frac{1}{4} + 1$ (at body centre) $\times 1 = 4$. Number of Cl^- ions = 8 (at corners) $\times \frac{1}{8} + 6$ (at face centre) $\times \frac{1}{2} = 4$. Thus 4 formula units per unit cell.
- **17.** (b) Lowest potential energy level provides stable arrangement.
- **18.** (b) The seven basic crystal lattice arrangements are :- Cubic, Tetragonal, Orthorhombic, Monoclinic, Hexagonal, Rhombohedral and Triclinic.
- 19. (a) The conditions for monoclinic crystal system.
- 20. (a) High lattice energy of ${\it BaSO}_4$ causes low solubility of ${\it BaSO}_4$ in water.
- **21.** (c) 14 kinds of Bravais lattices (space lattices) are possible in a crystal.
- **22.** (d) Radius ratio in *TlCl* is 0.732 1.000 and coordination number is 8 and arrangement is body centred cubic.
- **23.** (c) Zinc blende (*ZnS*) has *fcc* structure and is an ionic crystal having 4: 4 co-ordination number.
- **24.** (d) Na_2O has antifluorite (A_2B) type structure.
- **25.** (b) Zinc blende (ZnS) has fcc structure and is an ionic crystal having 4:4 co-ordination number.
- 28. (d) $\frac{1}{8} \times 8$ (at corners) = 1 $\frac{1}{2} \times 6$ (at face centre) = 3 Z = 1 + 3 = 4 (total no. of atoms)

Crystal packing

1. (b) Number of tetrahedral voids in the unit cell $= 2 \times \text{number of atoms} = 2Z.$

- **2.** (b) The system *ABC ABC*..... is also referred to as face-centred cubic or *fcc*.
- **3.** (d) It represents *ccp* arrangement.
- **4.** (a) *BCC* has a coordination number of 8.
- 5. (b) In rock salt structure the co-ordination number of $Na^+:Cl^-$ is 6:6.
- **6.** (d) The *bcc* cell consists of 8 atoms at the corners and one atom at centre.

$$\therefore n = \left(8 \times \frac{1}{8}\right) + 1 = 2.$$

The fcc cell consists of 8 atoms at the eight corners and one atom at each of the six faces. This atom at the face is shared by two unit cells

$$\therefore n = 8 \times \frac{1}{8} + \left(6 \times \frac{1}{2}\right) = 4.$$

- 7. (c) AB_2 type of structure is present in CaF_2 $\therefore AB_2 = A^{2+} + 2B^-; \quad CaF_2 = Ca^{2+} + 2F^-$
- **8.** (b) Potassium (*K*) has *bcc* lattice.
- **9.** (b) Number of atoms per unit cell in *bcc* system = 2
- **10.** (b) In body centred cubic, each atom/ion has a coordination number of 8.
- 11. (d) Number of octahedral sites = Number of sphere in the packing.∴ Number of octahedral sites per sphere = 1.
- 12. (c) ABAB is hexagonal close packing.
- 13. (a) Sodium (Na) is a body cube.
- **14.** (b) SrF_2 has fluorite (CaF_2) type structure.
- **15.** (b) In ZnS structure, sulphide ions occupy all FCC lattice points while Zn^{2+} ions are present in alternate tetrahedral voids.
- **16.** (b) MgO contains rock salt (NaCl) structure.
- **17.** (c) CaF_2 (fluorite) has fcc structure with 8 : 4 coordination number.
- 18. (b) Every constituent has two tetrahedral voids. In $\it ccp$ lattice atoms

$$= 8 \times \frac{1}{8} + 6 \times \frac{1}{2} = 4$$

 \therefore Tetrahedral void = $4 \times 2 = 8$,

Thus ratio = 4:8::1:2.

- **19.** (c) Tetrahedral sites one double comparable to octahedral sites then ratio of X and Z respectively 2 : 1 since formula of the compound X_2Z .
- **20.** (c) A atoms are at eight corners of the cube. Therefore, the no. of A atoms in the unit cell = $\frac{8}{8} = 1$. B atoms are at the face centre of six faces. Therefore, its share in the unit cell = $\frac{6}{2} = 3$. The formula is AB_3 .
- 21. (a) In *bcc* structure 68% of the available volume is occupied by spheres. Thus vacant space is 32%.

- (c) Number of atoms in the cubic close packed structure = 8. Number of octahedral voids = $\frac{1}{2} \times 8 = 4$.
- (a) Co-ordination number in HCP and CCP 23. arrangement is 12 while in *bcc* arrangement is
- (d) In NaCl (rock salt): Number of Na^+ ions = 12 24. (at edge centers) $\times \frac{1}{4} + 1$ (at body centre) $\times 1 = 4$. Number of Cl^{-} ions = 8 (at corners) $\times \frac{1}{8} + 6$ (at face centre) $\times \frac{1}{2} = 4$. Thus 4 formula units per unit cell.
- (b) Co-ordination number in HCP = 1225. Co-ordination number in Mq is also = 12
- (a) All are the iso-electronic species but Na^+ has 26. low positive charge so have largest radius.

Mathematical analysis of cubic system and Bragg's equation

- (b) Density of unit cell 1. $= \frac{N \times \text{mol.wt.}(M)}{V(=a^3) \times \text{avogadro no.}(N_o)} g \, cm^{-3}$
- (b) Distance between K^+ and $F^- = \frac{1}{2} \times \text{length of}$ 2. the edge
- 3. (a) There are two atoms in a bcc unit cell. So, number of atoms in 12.08×10^{23} unit cells $= 2 \times 12.08 \times 10^{23} = 24.16 \times 10^{23}$ atom.
- (b) bcc structure has one atom shared by 1 unit 4.
- (b) The structural arrangement of co-ordination 5. number '6' is octahedral and its radius ratio is 0.414 - 0.732. The example of octahedral is KCl and NaCl.
- 6. (a) The number of spheres in one body centred cubic and in one face centred cubic unit cell is 2 and 4 respectively.
- (b) Closest approach in bcc lattice 7. $=\frac{1}{2}$ of body diagonal $=\frac{1}{2}\times\sqrt{3}a=\frac{\sqrt{3}}{2}\times4.3=3.72\,\text{Å}$.
- (a) $M = \frac{\rho \times a^3 \times N_0 \times 10^{-30}}{10^{-30}}$ $=\frac{10\times(100)^3\times(6.02\times10^{23})\times10^{-30}}{4}=15.05$ $= \frac{6.02 \times 10^{23}}{15.05} \times 100 = 4 \times 10^{25}.$
- (c) Cs^+ and I^- have largest sizes. 11.
- (c) $58.5 \text{ g NaCl} = 1 \text{ mole } = 6.02 \times 10^{23} \text{ Na}^+ \text{Cl}^- \text{units}$.

One unit cell contains $4 Na^+Cl^-$ units. Hence number of unit cell present

$$=\frac{6.02\times10^{23}}{4}=1.5\times10^{23}.$$

13. (a) $\frac{1}{58.5} \times 6.023 \times 10^{23} = 1.029 \times 10^{22}$

A unit cell contains $4 Na^+$ ion and $4 Cl^-$ ions

:. Unit cell =
$$\frac{1.029 \times 10^{22}}{4}$$
 = 2.57 × 10²¹ unit cell.

- (b) Bragg's equation is $n\lambda = 2d \sin \theta$ 14. where n is an integer i.e. 1, 2, 3, 4 etc.
- (d) Face centred cubic structure contribute of 1/8 15. by each atom present on the corner and 1/2 by each atom present on the face.
- (c) As CsCl is body-centred, $d = \sqrt{3}a/2$.
- (a) Radius of *Na* (if *bcc* lattice) = $\frac{\sqrt{3}a}{4} = \frac{\sqrt{3} \times 4.29}{4}$ $= 1.8574 \text{ Å} = 1.8574 \times 10^{-8} \text{ cm}$
- (b) The crystals in which radius ratio value is between 0.225 - 0.414found tetrahedral crystal structure.
- $bcc, d = \frac{\sqrt{3}}{2}a$ or 19. (d) For $a = \frac{2d}{\sqrt{2}} = \frac{2 \times 4.52}{1.732} = 5.219 \text{ Å} = 522 \text{ pm}$ $\rho = \frac{Z \times M}{a^3 \times N_0 \times 10^{-30}} = \frac{2 \times 39}{(522)^3 \times (6.023 \times 10^{23}) \times 10^{-30}}$ $= 0.91 g / cm^3 = 910 kg m^{-3}$
- (c) The value of ionic radius ratio is 0.52 which is between 0.414 - 0.732, then the geometrical arrangement of ions in crystal is octahedral.
- 21. (c) The number of atoms present in sc, fcc and bcc unit cell are 1, 4, 2 respectively.
- (b) The number of atoms present in sc, fcc and bcc unit cell are 1, 4, 2 respectively.
- (d) $Cl^- Na^+ Cl^-$ 23.
- **24.** (a) $r = \frac{a}{2\sqrt{2}}$; $r = \frac{620}{2\sqrt{2}} = 219.25 \ Pm$
- $25. \quad (c) \quad Z = \frac{V \times N_0 \times d}{M}$ $=\frac{4.2\times8.6\times8.3\times10^{-24}\times6.023\times10^{23}\times3.3}{155}=3.84=4$
- (b) Volume of unit cell = a^3 $=(3.04 \times 10^{-8} cm)^3 = 2.81 \times 10^{-23} cm^3$
- (b) In FCC 27.

$$4r = \sqrt{2}a$$

$$a = \frac{4r}{\sqrt{2}}$$

Crystal structure and Coordination number

- 1. (b) In a unit cell, W atoms at the corner $= \frac{1}{8} \times 8 = 1$ O atoms at the centre of edges $= \frac{1}{4} \times 12 = 3$ Na atoms at the centre of the cube = 1 W: O: Na = 1: 3: 1, hence formula $= NaWO_3$
- 2. (d) For bcc lattice, co-ordination number is 8.
- **3.** (b) Body centered cubic lattice has a co-ordination number 8.
- **4.** (a) A atoms are at eight corners of the cube. Therefore, the number of *A* atoms in the unit $cell = \frac{8}{8} = 1$, atoms *B* per unit cell = 1. Hence the formula is *AB*.
- **5.** (d) Co-ordination number for *Cu* is 12.
- **6.** (b) Each Cs^+ in CsCl is surrounded by eight Cl^- and each Cl^- in CsCl is surrounded by eight Cs^+ .
- 7. (d) *X* atoms are at eight corners of the cube. Therefore, the number of *X* atoms in the unit $cell = \frac{8}{8} = 1$.

Y atoms are at the face centre of six faces. Therefore, its share in the unit cell $=\frac{6}{2}=3$. The formula is XY_3 .

8. (a) Let the units of ferrous oxide in a unit cell = n, molecular weight of ferrous oxide $(FeO) = 56 + 16 = 72 g \, mol^{-1}$,

weight of *n* units =
$$\frac{72 \times n}{6.023 \times 10^{23}}$$

Volume of one unit = $(length of corner)^3$

$$= (5 \text{\AA})^3 = 125 \times 10^{-24} \text{ cm}^3$$

 $Density = \frac{wt.ofcell}{volume}$

$$4.09 = \frac{72 \times n}{6.023 \times 10^{23} \times 125 \times 10^{-24}}$$
$$n = \frac{3079.2 \times 10^{-1}}{72} = 42.7 \times 10^{-1} = 4.27 \approx 4$$

- **9.** (b) In NaCl crystal Na^+ ions has coordination number 6.
- **10.** (b) Cl^- ions in CsCl adopt BCC type of packing.
- 11. (d) There were 6 *A* atoms on the face-centres removing face-centred atoms along one of the axes means removal of 2 *A* atoms.

 Now, number of *A* atoms per unit cell

$$= 8 \times \frac{1}{8} + 4 \times \frac{1}{2} = 3$$
(corners) (face-centred)

Number of B atoms per unit cell

$$= 12 \times \frac{1}{4} + 1 = 4$$
(edge centred) (body centred)

Hence the resultant stoichiometry is A_3B_4

- **12.** (a) In Cs^+Cl^- crystal co-ordination number of each ion is 8.
- 13. (b) $r_+/r_- = \frac{180}{187} = 0.962$ which lies in the range of 0.732 1.000, hence co-ordination number = 8 *i.e.* the structure is *CsCl* type.
- **14.** (a) In diamond, C-atoms are arranged in a regular tetrahedral structure.
- **15.** (b) In *hcp*, co-ordination no. is 12.
- **16.** (c) Mg has 6 co-ordination number (fcc structure).
- 17. (d) In NaCl crystal every Na^+ ion is surrounded by $6 Cl^-$ ion and every chloride ion is surrounded by $6 Na^+$ ion.
- **18.** (d) Crystals show good cleavage because their constituent particles are arranged in planes.
- 19. (b) Fe_3O_4 is a non-stoichiometric compound because in it the ratio of the cations to the anions becomes different from that indicated by the chemical formula.
- **20.** (d) The radius ratio for co-ordination number 4, 6 and 8 lies in between the ranges [0.225-0.414], [0.414-0.732] and [0.732-1] respectively.
- 21. (c) The radius ratio for co-ordination number 4, 6 and 8 lies in between the ranges [0.225-0.414], [0.414-0.732] and [0.732-1] respectively.
- **22.** (b) In Na_2O , each oxide ions (O^{2-}) is co-ordinated to $8Na^+$ ions and each Na^+ ion to 4 oxide ions. Hence it has 4:8 co-ordination.
- **23.** (b) When radius ratio between 0.732 –1, then coordination number is 8 and structural arrangement is body-centred cubic.
- **24.** (c) Each Cs^+ is surrounded by eight Cl^- ions in CsCl crystal lattice because its co-ordination number is 8:8.
- **25.** (a) *NaCl* has *fcc* arrangement of ions.
- **26.** (c) Each Na^+ is surrounded by six Cl^- ions in NaCl crystal lattice because its co-ordination number is 6:6.
- **27.** (b) Zinc blende (*ZnS*) has *fcc* structure and is an ionic crystal having 4 : 4 co-ordination number.
- **30.** (d) In a simple cubic structure $z = \frac{1}{8} \times 8 \text{ (atoms one at a corners)}$

z = 1

- **31.** (a) Co-ordination number in hcp structure is 12.
- **32.** (acd) A metal that crystallizes in *bcc* structure has a co-ordination number of 8.
- **33.** (a) In sodium chloride, each Na^+ ion is surrounded by six Cl^- ions and each Cl^- ion is surrounded by six Na^+ ions. Thus, both the ions have coordination number six.
- **34.** (b) The Ca^{2+} ions are arranged in (ccp) arrangement, i.e. Ca^{2+} ions are present at all corners and tat the centre of each face of the cube. the fluoride ions occupy all the tetrahedral sites. This is 8 : 4 arrangement i.e., each Ca^{2+} ion is surrounded by $8F^-$ ions and each F^- ion by four Ca^{2+} ions.

Defects in crystal

- (c) When polar crystal is subjected to a mechanical stress, electricity is produced - a case of piezoelectricity. Reversely, if electric field is applied, mechanical stress is developed. Piezoelectric crystal acts as a mechanical electrical transductor.
- **2.** (b) More is the Schottky defect in crystal more is the decrease in density.
- (d) All the given statements are correct about Fcentres.
- 5. (a) As each Sr^{2+} ion introduces one cation vacancy, therefore concentration of cation vacancies = mol % of $SrCl_2$ added.
- **6.** (c) Yellow colour on heating *NaCl* in presence of *Na* is due to presence of electrons in anion vacancies (*F*-centres).
- 7. (d) Frenkel's defect is due to shift of an ion from the normal lattice site (Creating a vacancy) and occupy interstitial spaces.
- **8.** (c) AgBr exhibits Frenkel defect due to large difference in the size of Ag^+ and Br^- ions.
- **9.** (d) Schottky defects occurs in highly ionic compounds which have high co-ordination number ex. *NaCl*, *KCl*, *CsCl*.
- **10.** (d) Schottky defect is due to missing of equal number of cations and anions.
- **11.** (a) Schottky defect is due to missing of equal number of cations and anions.
- **12.** (a) Impurity present in a crystal does not establish thermal equilibrium.
- **13.** (c) Since no ions are missing from the crystal as a whole, there is no effect on density.
- **15.** (b) On adding non-metal in metal the metal becomes less tensile.
- **16.** (c) AgBr exhibits Frenkel defect due to large difference in the size of Ag^+ and Br^- ions.
- 17. (c) Both are stoichiometric crystalline defects.

- **18.** (c) Brass, Cu = 80%, Zn = 20% substitutional alloy. Steel is an interstitial alloy because it is an alloy of *Fe* with *C*, *C* atoms occupy the interstitial voids of *Fe* crystal.
- **19.** (d) In metal excess defect when holes created by missing of anions are occupied by electrons, there sites are called *F*-centres and are responsible for colour in the crystal.
- (c) KBr exhibits Schottky defect and not Frenkel defect.
- **21.** (c) When cation shifts from lattice to interstitial site, the defect is called Frenkel defect.
- **22.** (d) F-centres are the sites where anions are missing and instead electrons are present. they are responsible for colour.

Critical Thinking Questions

- 1. (c) Amorphous solids neither have ordered arrangement (i.e. no definite shape) nor have sharp melting point like crystals, but when heated, they become pliable until they assume the properties usually related to liquids. It is therefore they are regarded as super-cooled liquids.
- **2.** (c) Silicon due to its catenation property form network solid.
- **3.** (c) Orthorhombic geometry has $a \neq b \neq c$ and $\alpha = \beta = \gamma = 90^{\circ}$. The shape of match box obey this geometry.
- **4.** (d) In a triclinic crystal has no notation of symmetry.
- 5. (a) In $N\!H_3$ molecule, the original appearance is repeated as a result of rotation through $120^{\,o}$. Such as axis is said to be an axis of three-fold symmetry or a triad axis.
- **6.** (a) Na_2O has antifluorite (A_2B) type structure.
- 7. (b) Cationic radius increases down the group and decreases along the period.
- **8.** (c) Distance between centres of cation and anion $= \frac{d}{2} = \frac{508}{2} = 254 \ pm$

$$r_c + r_a = 254 \ pm$$
 or $110 + r_a = 254$ or $r_a = 144 \ pm$

9. (b)
$$\rho = \frac{n \times M}{a^3 \times N_0 \times 10^{-30}}$$
$$= \frac{2 \times 100}{(400)^3 \times (6.02 \times 10^{23}) \times 10^{-30}} = 5.188 \text{ g/cm}^3$$

10. (a)
$$NaCl$$
 structure $\xrightarrow{\text{High}}$ $CsCl$ structure (8:8 co.-ord.)

- 11. (a) Difference = $2.178 \times 10^3 2.165 \times 10^3 = 0.013 \times 10^3$ Fraction unoccupied = $\frac{0.013 \times 10^3}{2.178 \times 10^3} = 5.96 \times 10^{-3}$
- **12.** (c) $CsBr_3$ consist of Cs^+ and Br_3^- ions.

- 13. (a) Each Cs^+ is surrounded by eight Cl^- ions in CsCl crystal lattice because its co-ordination number is 8:8.
- **14.** (b) In each CaF_2 each calcium cation is surrounded by eight fluoride anions in a body centred cubic arrangement. Each fluoride ion is in contact with four calcium ions. Thus CaF_2 has 8 : 4 co-ordination number.
- 15. (c) The radius ratio for co-ordination number 4, 6 and 8 lies in between the ranges [0.225 0.414], [0.414 0.732] and [0.732 1] respectively

respectively. 0-16. (b) Si

- 17. (b) In this diagram, equal number of cations (Na^+) and anions (Cl^-) are missing, so it, shows schottky defect.
- 18. (c) Zeolite is a three dimensional silicate because of in the silicates all the four oxygen atoms at $(SiO_4)^{-4}$ tetrahedra are shared with other tetrahedra, vesulting in a three dimensional network.

Assertion & Reason

- 1. (b) It is true that in the dimond structure, carbon atoms are arranged in tetrahedrally (sp^3 hybridized) but it is not the correct explanation of assertion.
- 2. (d) Tetrahedral holes are smaller in size than octahedral holes. Cations usually occupy less space than anions.
- 3. (d) Crystalline solids have regular arrangement of constituent particles and are anisotropic whereas amorphous solids have no regular arrangement and are isotropic.
- **4.** (a) Schottky defect is due to missing of equal number of cations and anions.
- **5.** (b) Space or crystal lattice is a regular repeating arrangement of points in space and forms the basis of classification of all structures.
- **6.** (c) Tetrahedral void is so called because it is surrounded by four spheres tetrahedrally while octahedral void is so called because it is surrounded by six spheres octahedrally.

- 7. (c) Two corners per tetrahedron one shared in both the cases.
- **8.** (b) When an atom or an ion is missing from its normal lattice site, a lattice vacancy or defect is created, which is called schottky defect. Due to missing density of crystal will be lowered.
- (b) On heating, the metal atoms deposit on the surface and finally they deffuse into the crystal and after ionisation the alkali metal ion occupies cationic vacancy where as electron occupies anionic vacancy.
- (a) In case of semiconductors, the gap between valence band and the conduction band is small and there fore some of the electrons may jump from valence band to conduction band and thus on increasing temperature conductivity is also increased.
- 11. (a) All magnetically ordered solids (ferromagnetic and antiferromagnetic solids) transform to the paramagnetic state at high temperature due to the randomisation of spins.
- 12. (c) In piezoelectric crystals, the dipoles may align them selves in an ordered manner such that there is a net dipole moment in the crystal.

